Source for java.math.BigDecimal

   1: /* java.math.BigDecimal -- Arbitrary precision decimals.
   2:    Copyright (C) 1999, 2000, 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
   3: 
   4: This file is part of GNU Classpath.
   5: 
   6: GNU Classpath is free software; you can redistribute it and/or modify
   7: it under the terms of the GNU General Public License as published by
   8: the Free Software Foundation; either version 2, or (at your option)
   9: any later version.
  10:  
  11: GNU Classpath is distributed in the hope that it will be useful, but
  12: WITHOUT ANY WARRANTY; without even the implied warranty of
  13: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14: General Public License for more details.
  15: 
  16: You should have received a copy of the GNU General Public License
  17: along with GNU Classpath; see the file COPYING.  If not, write to the
  18: Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  19: 02110-1301 USA.
  20: 
  21: Linking this library statically or dynamically with other modules is
  22: making a combined work based on this library.  Thus, the terms and
  23: conditions of the GNU General Public License cover the whole
  24: combination.
  25: 
  26: As a special exception, the copyright holders of this library give you
  27: permission to link this library with independent modules to produce an
  28: executable, regardless of the license terms of these independent
  29: modules, and to copy and distribute the resulting executable under
  30: terms of your choice, provided that you also meet, for each linked
  31: independent module, the terms and conditions of the license of that
  32: module.  An independent module is a module which is not derived from
  33: or based on this library.  If you modify this library, you may extend
  34: this exception to your version of the library, but you are not
  35: obligated to do so.  If you do not wish to do so, delete this
  36: exception statement from your version. */
  37: 
  38: package java.math;
  39: 
  40: public class BigDecimal extends Number implements Comparable<BigDecimal>
  41: {
  42:   private BigInteger intVal;
  43:   private int scale;
  44:   private int precision = 0;
  45:   private static final long serialVersionUID = 6108874887143696463L;
  46: 
  47:   /**
  48:    * The constant zero as a BigDecimal with scale zero.
  49:    * @since 1.5
  50:    */
  51:   public static final BigDecimal ZERO = 
  52:     new BigDecimal (BigInteger.ZERO, 0);
  53: 
  54:   /**
  55:    * The constant one as a BigDecimal with scale zero.
  56:    * @since 1.5
  57:    */
  58:   public static final BigDecimal ONE = 
  59:     new BigDecimal (BigInteger.ONE, 0);
  60: 
  61:   /**
  62:    * The constant ten as a BigDecimal with scale zero.
  63:    * @since 1.5
  64:    */
  65:   public static final BigDecimal TEN = 
  66:     new BigDecimal (BigInteger.TEN, 0);
  67: 
  68:   public static final int ROUND_UP = 0;
  69:   public static final int ROUND_DOWN = 1;
  70:   public static final int ROUND_CEILING = 2;
  71:   public static final int ROUND_FLOOR = 3;
  72:   public static final int ROUND_HALF_UP = 4;
  73:   public static final int ROUND_HALF_DOWN = 5;
  74:   public static final int ROUND_HALF_EVEN = 6;
  75:   public static final int ROUND_UNNECESSARY = 7;
  76: 
  77:   /**
  78:    * Constructs a new BigDecimal whose unscaled value is val and whose
  79:    * scale is zero.
  80:    * @param val the value of the new BigDecimal
  81:    * @since 1.5
  82:    */
  83:   public BigDecimal (int val)
  84:   {
  85:     this.intVal = BigInteger.valueOf(val);
  86:     this.scale = 0;
  87:   }
  88:   
  89:   /**
  90:    * Constructs a BigDecimal using the BigDecimal(int) constructor and then
  91:    * rounds according to the MathContext.
  92:    * @param val the value for the initial (unrounded) BigDecimal
  93:    * @param mc the MathContext specifying the rounding
  94:    * @throws ArithmeticException if the result is inexact but the rounding type
  95:    * is RoundingMode.UNNECESSARY
  96:    * @since 1.5
  97:    */
  98:   public BigDecimal (int val, MathContext mc)
  99:   {
 100:     this (val);
 101:     if (mc.getPrecision() != 0)
 102:       {
 103:         BigDecimal result = this.round(mc);
 104:         this.intVal = result.intVal;
 105:         this.scale = result.scale;
 106:         this.precision = result.precision;
 107:       }    
 108:   }
 109:   
 110:   /**
 111:    * Constructs a new BigDecimal whose unscaled value is val and whose
 112:    * scale is zero.
 113:    * @param val the value of the new BigDecimal
 114:    */
 115:   public BigDecimal (long val)
 116:   {
 117:     this.intVal = BigInteger.valueOf(val);
 118:     this.scale = 0;
 119:   }
 120:   
 121:   /**
 122:    * Constructs a BigDecimal from the long in the same way as BigDecimal(long)
 123:    * and then rounds according to the MathContext.
 124:    * @param val the long from which we create the initial BigDecimal
 125:    * @param mc the MathContext that specifies the rounding behaviour
 126:    * @throws ArithmeticException if the result is inexact but the rounding type
 127:    * is RoundingMode.UNNECESSARY
 128:    * @since 1.5
 129:    */
 130:   public BigDecimal (long val, MathContext mc)
 131:   {
 132:     this(val);
 133:     if (mc.getPrecision() != 0)
 134:       {
 135:         BigDecimal result = this.round(mc);
 136:         this.intVal = result.intVal;
 137:         this.scale = result.scale;
 138:         this.precision = result.precision;
 139:       }    
 140:   }
 141:   
 142:   /**
 143:    * Constructs a BigDecimal whose value is given by num rounded according to 
 144:    * mc.  Since num is already a BigInteger, the rounding refers only to the 
 145:    * precision setting in mc, if mc.getPrecision() returns an int lower than
 146:    * the number of digits in num, then rounding is necessary.
 147:    * @param num the unscaledValue, before rounding
 148:    * @param mc the MathContext that specifies the precision
 149:    * @throws ArithmeticException if the result is inexact but the rounding type
 150:    * is RoundingMode.UNNECESSARY
 151:    * * @since 1.5
 152:    */
 153:   public BigDecimal (BigInteger num, MathContext mc)
 154:   {
 155:     this (num, 0);
 156:     if (mc.getPrecision() != 0)
 157:       {
 158:         BigDecimal result = this.round(mc);
 159:         this.intVal = result.intVal;
 160:         this.scale = result.scale;
 161:         this.precision = result.precision;
 162:       }
 163:   }
 164:   
 165:   /**
 166:    * Constructs a BigDecimal from the String val according to the same
 167:    * rules as the BigDecimal(String) constructor and then rounds 
 168:    * according to the MathContext mc.
 169:    * @param val the String from which we construct the initial BigDecimal
 170:    * @param mc the MathContext that specifies the rounding
 171:    * @throws ArithmeticException if the result is inexact but the rounding type
 172:    * is RoundingMode.UNNECESSARY   
 173:    * @since 1.5
 174:    */
 175:   public BigDecimal (String val, MathContext mc)
 176:   {
 177:     this (val);
 178:     if (mc.getPrecision() != 0)
 179:       {
 180:         BigDecimal result = this.round(mc);
 181:         this.intVal = result.intVal;
 182:         this.scale = result.scale;
 183:         this.precision = result.precision;
 184:       }
 185:   }
 186:   
 187:   /**
 188:    * Constructs a BigDecimal whose unscaled value is num and whose
 189:    * scale is zero.
 190:    * @param num the value of the new BigDecimal
 191:    */
 192:   public BigDecimal (BigInteger num) 
 193:   {
 194:     this (num, 0);
 195:   }
 196: 
 197:   /**
 198:    * Constructs a BigDecimal whose unscaled value is num and whose
 199:    * scale is scale.
 200:    * @param num
 201:    * @param scale
 202:    */
 203:   public BigDecimal (BigInteger num, int scale)
 204:   {
 205:     this.intVal = num;
 206:     this.scale = scale;
 207:   }
 208:   
 209:   /**
 210:    * Constructs a BigDecimal using the BigDecimal(BigInteger, int) 
 211:    * constructor and then rounds according to the MathContext.
 212:    * @param num the unscaled value of the unrounded BigDecimal
 213:    * @param scale the scale of the unrounded BigDecimal
 214:    * @param mc the MathContext specifying the rounding
 215:    * @throws ArithmeticException if the result is inexact but the rounding type
 216:    * is RoundingMode.UNNECESSARY
 217:    * @since 1.5
 218:    */
 219:   public BigDecimal (BigInteger num, int scale, MathContext mc)
 220:   {
 221:     this (num, scale);
 222:     if (mc.getPrecision() != 0)
 223:       {
 224:         BigDecimal result = this.round(mc);
 225:         this.intVal = result.intVal;
 226:         this.scale = result.scale;
 227:         this.precision = result.precision;
 228:       }
 229:   }
 230: 
 231:   /**
 232:    * Constructs a BigDecimal in the same way as BigDecimal(double) and then
 233:    * rounds according to the MathContext.
 234:    * @param num the double from which the initial BigDecimal is created
 235:    * @param mc the MathContext that specifies the rounding behaviour
 236:    * @throws ArithmeticException if the result is inexact but the rounding type
 237:    * is RoundingMode.UNNECESSARY 
 238:    * @since 1.5
 239:    */
 240:   public BigDecimal (double num, MathContext mc)
 241:   {
 242:     this (num);
 243:     if (mc.getPrecision() != 0)
 244:       {
 245:         BigDecimal result = this.round(mc);
 246:         this.intVal = result.intVal;
 247:         this.scale = result.scale;
 248:         this.precision = result.precision;
 249:       }
 250:   }
 251:   
 252:   public BigDecimal (double num) throws NumberFormatException 
 253:   {
 254:     if (Double.isInfinite (num) || Double.isNaN (num))
 255:       throw new NumberFormatException ("invalid argument: " + num);
 256:     // Note we can't convert NUM to a String and then use the
 257:     // String-based constructor.  The BigDecimal documentation makes
 258:     // it clear that the two constructors work differently.
 259: 
 260:     final int mantissaBits = 52;
 261:     final int exponentBits = 11;
 262:     final long mantMask = (1L << mantissaBits) - 1;
 263:     final long expMask = (1L << exponentBits) - 1;
 264: 
 265:     long bits = Double.doubleToLongBits (num);
 266:     long mantissa = bits & mantMask;
 267:     long exponent = (bits >>> mantissaBits) & expMask;
 268:     boolean denormal = exponent == 0;
 269: 
 270:     // Correct the exponent for the bias.
 271:     exponent -= denormal ? 1022 : 1023;
 272: 
 273:     // Now correct the exponent to account for the bits to the right
 274:     // of the decimal.
 275:     exponent -= mantissaBits;
 276:     // Ordinary numbers have an implied leading `1' bit.
 277:     if (! denormal)
 278:       mantissa |= (1L << mantissaBits);
 279: 
 280:     // Shave off factors of 10.
 281:     while (exponent < 0 && (mantissa & 1) == 0)
 282:       {
 283:     ++exponent;
 284:     mantissa >>= 1;
 285:       }
 286: 
 287:     intVal = BigInteger.valueOf (bits < 0 ? - mantissa : mantissa);
 288:     if (exponent < 0)
 289:       {
 290:     // We have MANTISSA * 2 ^ (EXPONENT).
 291:     // Since (1/2)^N == 5^N * 10^-N we can easily convert this
 292:     // into a power of 10.
 293:     scale = (int) (- exponent);
 294:     BigInteger mult = BigInteger.valueOf (5).pow (scale);
 295:     intVal = intVal.multiply (mult);
 296:       }
 297:     else
 298:       {
 299:     intVal = intVal.shiftLeft ((int) exponent);
 300:     scale = 0;
 301:       }
 302:   }
 303: 
 304:   /**
 305:    * Constructs a BigDecimal from the char subarray and rounding 
 306:    * according to the MathContext.
 307:    * @param in the char array
 308:    * @param offset the start of the subarray
 309:    * @param len the length of the subarray
 310:    * @param mc the MathContext for rounding
 311:    * @throws NumberFormatException if the char subarray is not a valid 
 312:    * BigDecimal representation
 313:    * @throws ArithmeticException if the result is inexact but the rounding 
 314:    * mode is RoundingMode.UNNECESSARY
 315:    * @since 1.5
 316:    */
 317:   public BigDecimal(char[] in, int offset, int len, MathContext mc)
 318:   {
 319:     this(in, offset, len);
 320:     // If mc has precision other than zero then we must round.
 321:     if (mc.getPrecision() != 0)
 322:       {
 323:         BigDecimal temp = this.round(mc);
 324:         this.intVal = temp.intVal;
 325:         this.scale = temp.scale;
 326:         this.precision = temp.precision;
 327:       }
 328:   }
 329:   
 330:   /**
 331:    * Constructs a BigDecimal from the char array and rounding according
 332:    * to the MathContext. 
 333:    * @param in the char array
 334:    * @param mc the MathContext
 335:    * @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
 336:    * representation
 337:    * @throws ArithmeticException if the result is inexact but the rounding mode
 338:    * is RoundingMode.UNNECESSARY
 339:    * @since 1.5
 340:    */
 341:   public BigDecimal(char[] in, MathContext mc)
 342:   {
 343:     this(in, 0, in.length);
 344:     // If mc has precision other than zero then we must round.
 345:     if (mc.getPrecision() != 0)
 346:       {
 347:         BigDecimal temp = this.round(mc);
 348:         this.intVal = temp.intVal;
 349:         this.scale = temp.scale;
 350:         this.precision = temp.precision;
 351:       } 
 352:   }
 353:   
 354:   /**
 355:    * Constructs a BigDecimal from the given char array, accepting the same
 356:    * sequence of characters as the BigDecimal(String) constructor.
 357:    * @param in the char array
 358:    * @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
 359:    * representation
 360:    * @since 1.5
 361:    */
 362:   public BigDecimal(char[] in)
 363:   {
 364:     this(in, 0, in.length);
 365:   }
 366:   
 367:   /**
 368:    * Constructs a BigDecimal from a char subarray, accepting the same sequence
 369:    * of characters as the BigDecimal(String) constructor.  
 370:    * @param in the char array
 371:    * @param offset the start of the subarray
 372:    * @param len the length of the subarray
 373:    * @throws NumberFormatException if <code>in</code> is not a valid
 374:    * BigDecimal representation.
 375:    * @since 1.5
 376:    */
 377:   public BigDecimal(char[] in, int offset, int len)
 378:   {
 379:     //  start is the index into the char array where the significand starts
 380:     int start = offset;
 381:     //  end is one greater than the index of the last character used
 382:     int end = offset + len;
 383:     //  point is the index into the char array where the exponent starts
 384:     //  (or, if there is no exponent, this is equal to end)
 385:     int point = offset;
 386:     //  dot is the index into the char array where the decimal point is 
 387:     //  found, or -1 if there is no decimal point
 388:     int dot = -1;
 389:     
 390:     //  The following examples show what these variables mean.  Note that
 391:     //  point and dot don't yet have the correct values, they will be 
 392:     //  properly assigned in a loop later on in this method.
 393:     //
 394:     //  Example 1
 395:     //
 396:     //         +  1  0  2  .  4  6  9
 397:     //  __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 398:     //
 399:     //  offset = 2, len = 8, start = 3, dot = 6, point = end = 10
 400:     //
 401:     //  Example 2
 402:     //
 403:     //         +  2  3  4  .  6  1  3  E  -  1
 404:     //  __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 405:     //
 406:     //  offset = 2, len = 11, start = 3, dot = 6, point = 10, end = 13
 407:     //
 408:     //  Example 3
 409:     //
 410:     //         -  1  2  3  4  5  e  7  
 411:     //  __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 412:     //
 413:     //  offset = 2, len = 8, start = 3, dot = -1, point = 8, end = 10 
 414:     
 415:     //  Determine the sign of the number.
 416:     boolean negative = false;
 417:     if (in[offset] == '+')
 418:       {
 419:         ++start;
 420:         ++point;
 421:       }
 422:     else if (in[offset] == '-')
 423:       {
 424:         ++start;
 425:         ++point;
 426:         negative = true;
 427:       }
 428: 
 429:     //  Check each character looking for the decimal point and the 
 430:     //  start of the exponent.
 431:     while (point < end)
 432:       {
 433:         char c = in[point];
 434:         if (c == '.')
 435:           {
 436:             // If dot != -1 then we've seen more than one decimal point.
 437:             if (dot != -1)
 438:               throw new NumberFormatException("multiple `.'s in number");
 439:             dot = point;
 440:           }
 441:         // Break when we reach the start of the exponent.
 442:         else if (c == 'e' || c == 'E')
 443:           break;
 444:         // Throw an exception if the character was not a decimal or an 
 445:         // exponent and is not a digit.
 446:         else if (!Character.isDigit(c))
 447:           throw new NumberFormatException("unrecognized character at " + point
 448:                                           + ": " + c);
 449:         ++point;
 450:       }
 451: 
 452:     // val is a StringBuilder from which we'll create a BigInteger
 453:     // which will be the unscaled value for this BigDecimal
 454:     StringBuilder val = new StringBuilder(point - start - 1);
 455:     if (dot != -1)
 456:       {
 457:         // If there was a decimal we must combine the two parts that 
 458:         // contain only digits and we must set the scale properly.
 459:         val.append(in, start, dot - start);
 460:         val.append(in, dot + 1, point - dot - 1);
 461:         scale = point - 1 - dot;
 462:       }
 463:     else
 464:       {
 465:         // If there was no decimal then the unscaled value is just the number
 466:         // formed from all the digits and the scale is zero.
 467:         val.append(in, start, point - start);
 468:         scale = 0;
 469:       }
 470:     if (val.length() == 0)
 471:       throw new NumberFormatException("no digits seen");
 472: 
 473:     // Prepend a negative sign if necessary.
 474:     if (negative)
 475:       val.insert(0, '-');
 476:     intVal = new BigInteger(val.toString());
 477: 
 478:     // Now parse exponent.
 479:     // If point < end that means we broke out of the previous loop when we
 480:     // saw an 'e' or an 'E'.
 481:     if (point < end)
 482:       {
 483:         point++;
 484:         // Ignore a '+' sign.
 485:         if (in[point] == '+')
 486:           point++;
 487: 
 488:         // Throw an exception if there were no digits found after the 'e'
 489:         // or 'E'.
 490:         if (point >= end)
 491:           throw new NumberFormatException("no exponent following e or E");
 492: 
 493:         try
 494:           {
 495:             // Adjust the scale according to the exponent.  
 496:             // Remember that the value of a BigDecimal is
 497:             // unscaledValue x Math.pow(10, -scale)
 498:             scale -= Integer.parseInt(new String(in, point, end - point));
 499:           }
 500:         catch (NumberFormatException ex)
 501:           {
 502:             throw new NumberFormatException("malformed exponent");
 503:           }
 504:       }
 505:   }
 506:   
 507:   public BigDecimal (String num) throws NumberFormatException 
 508:   {
 509:     int len = num.length();
 510:     int start = 0, point = 0;
 511:     int dot = -1;
 512:     boolean negative = false;
 513:     if (num.charAt(0) == '+')
 514:       {
 515:     ++start;
 516:     ++point;
 517:       }
 518:     else if (num.charAt(0) == '-')
 519:       {
 520:     ++start;
 521:     ++point;
 522:     negative = true;
 523:       }
 524: 
 525:     while (point < len)
 526:       {
 527:     char c = num.charAt (point);
 528:     if (c == '.')
 529:       {
 530:         if (dot >= 0)
 531:           throw new NumberFormatException ("multiple `.'s in number");
 532:         dot = point;
 533:       }
 534:     else if (c == 'e' || c == 'E')
 535:       break;
 536:     else if (Character.digit (c, 10) < 0)
 537:       throw new NumberFormatException ("unrecognized character: " + c);
 538:     ++point;
 539:       }
 540: 
 541:     String val;
 542:     if (dot >= 0)
 543:       {
 544:     val = num.substring (start, dot) + num.substring (dot + 1, point);
 545:     scale = point - 1 - dot;
 546:       }
 547:     else
 548:       {
 549:     val = num.substring (start, point);
 550:     scale = 0;
 551:       }
 552:     if (val.length () == 0)
 553:       throw new NumberFormatException ("no digits seen");
 554: 
 555:     if (negative)
 556:       val = "-" + val;
 557:     intVal = new BigInteger (val);
 558: 
 559:     // Now parse exponent.
 560:     if (point < len)
 561:       {
 562:         point++;
 563:         if (num.charAt(point) == '+')
 564:           point++;
 565: 
 566:         if (point >= len )
 567:           throw new NumberFormatException ("no exponent following e or E");
 568:     
 569:         try 
 570:       {        
 571:         scale -= Integer.parseInt (num.substring (point));
 572:       }
 573:         catch (NumberFormatException ex) 
 574:       {
 575:         throw new NumberFormatException ("malformed exponent");
 576:       }
 577:       }
 578:   }
 579: 
 580:   public static BigDecimal valueOf (long val) 
 581:   {
 582:     return valueOf (val, 0);
 583:   }
 584: 
 585:   public static BigDecimal valueOf (long val, int scale) 
 586:     throws NumberFormatException 
 587:   {
 588:     if ((scale == 0) && ((int)val == val))
 589:       switch ((int) val)
 590:     {
 591:     case 0:
 592:       return ZERO;
 593:     case 1:
 594:       return ONE;
 595:     }
 596: 
 597:     return new BigDecimal (BigInteger.valueOf (val), scale);
 598:   }
 599: 
 600:   public BigDecimal add (BigDecimal val) 
 601:   {
 602:     // For addition, need to line up decimals.  Note that the movePointRight
 603:     // method cannot be used for this as it might return a BigDecimal with
 604:     // scale == 0 instead of the scale we need.
 605:     BigInteger op1 = intVal;
 606:     BigInteger op2 = val.intVal;
 607:     if (scale < val.scale)
 608:       op1 = op1.multiply (BigInteger.TEN.pow (val.scale - scale));
 609:     else if (scale > val.scale)
 610:       op2 = op2.multiply (BigInteger.TEN.pow (scale - val.scale));
 611: 
 612:     return new BigDecimal (op1.add (op2), Math.max (scale, val.scale));
 613:   }
 614:   
 615:   /**
 616:    * Returns a BigDecimal whose value is found first by calling the 
 617:    * method add(val) and then by rounding according to the MathContext mc.
 618:    * @param val the augend
 619:    * @param mc the MathContext for rounding
 620:    * @throws ArithmeticException if the value is inexact but the rounding is
 621:    * RoundingMode.UNNECESSARY
 622:    * @return <code>this</code> + <code>val</code>, rounded if need be
 623:    * @since 1.5
 624:    */
 625:   public BigDecimal add (BigDecimal val, MathContext mc)
 626:   {
 627:     return add(val).round(mc);
 628:   }
 629: 
 630:   public BigDecimal subtract (BigDecimal val) 
 631:   {
 632:     return this.add(val.negate());
 633:   }
 634: 
 635:   /**
 636:    * Returns a BigDecimal whose value is found first by calling the 
 637:    * method subtract(val) and then by rounding according to the MathContext mc.
 638:    * @param val the subtrahend
 639:    * @param mc the MathContext for rounding
 640:    * @throws ArithmeticException if the value is inexact but the rounding is
 641:    * RoundingMode.UNNECESSARY
 642:    * @return <code>this</code> - <code>val</code>, rounded if need be
 643:    * @since 1.5
 644:    */
 645:   public BigDecimal subtract (BigDecimal val, MathContext mc)
 646:   {
 647:     return subtract(val).round(mc);
 648:   }
 649: 
 650:   public BigDecimal multiply (BigDecimal val) 
 651:   {
 652:     return new BigDecimal (intVal.multiply (val.intVal), scale + val.scale);
 653:   }
 654:   
 655:   /**
 656:    * Returns a BigDecimal whose value is (this x val) before it is rounded
 657:    * according to the MathContext mc. 
 658:    * @param val the multiplicand
 659:    * @param mc the MathContext for rounding
 660:    * @return a new BigDecimal with value approximately (this x val)
 661:    * @throws ArithmeticException if the value is inexact but the rounding mode
 662:    * is RoundingMode.UNNECESSARY
 663:    * @since 1.5
 664:    */
 665:   public BigDecimal multiply (BigDecimal val, MathContext mc)
 666:   {
 667:     return multiply(val).round(mc);
 668:   }
 669: 
 670:   public BigDecimal divide (BigDecimal val, int roundingMode) 
 671:     throws ArithmeticException, IllegalArgumentException 
 672:   {
 673:     return divide (val, scale, roundingMode);
 674:   }
 675:   
 676:   /**
 677:    * Returns a BigDecimal whose value is (this / val), with the specified scale
 678:    * and rounding according to the RoundingMode 
 679:    * @param val the divisor
 680:    * @param scale the scale of the BigDecimal returned
 681:    * @param roundingMode the rounding mode to use
 682:    * @return a BigDecimal whose value is approximately (this / val)
 683:    * @throws ArithmeticException if divisor is zero or the rounding mode is
 684:    * UNNECESSARY but the specified scale cannot represent the value exactly
 685:    * @since 1.5
 686:    */
 687:   public BigDecimal divide(BigDecimal val, 
 688:                            int scale, RoundingMode roundingMode)
 689:   {
 690:     return divide (val, scale, roundingMode.ordinal());
 691:   }
 692: 
 693:   /**
 694:    * Returns a BigDecimal whose value is (this / val) rounded according to the
 695:    * RoundingMode
 696:    * @param val the divisor
 697:    * @param roundingMode the rounding mode to use
 698:    * @return a BigDecimal whose value is approximately (this / val)
 699:    * @throws ArithmeticException if divisor is zero or the rounding mode is
 700:    * UNNECESSARY but the specified scale cannot represent the value exactly
 701:    */
 702:   public BigDecimal divide (BigDecimal val, RoundingMode roundingMode)
 703:   {
 704:     return divide (val, scale, roundingMode.ordinal());
 705:   }
 706:   
 707:   public BigDecimal divide(BigDecimal val, int newScale, int roundingMode)
 708:     throws ArithmeticException, IllegalArgumentException 
 709:   {
 710:     if (roundingMode < 0 || roundingMode > 7)
 711:       throw 
 712:     new IllegalArgumentException("illegal rounding mode: " + roundingMode);
 713: 
 714:     if (intVal.signum () == 0)    // handle special case of 0.0/0.0
 715:       return newScale == 0 ? ZERO : new BigDecimal (ZERO.intVal, newScale);
 716:     
 717:     // Ensure that pow gets a non-negative value.
 718:     BigInteger valIntVal = val.intVal;
 719:     int power = newScale - (scale - val.scale);
 720:     if (power < 0)
 721:       {
 722:     // Effectively increase the scale of val to avoid an
 723:     // ArithmeticException for a negative power.
 724:         valIntVal = valIntVal.multiply (BigInteger.TEN.pow (-power));
 725:     power = 0;
 726:       }
 727: 
 728:     BigInteger dividend = intVal.multiply (BigInteger.TEN.pow (power));
 729:     
 730:     BigInteger parts[] = dividend.divideAndRemainder (valIntVal);
 731: 
 732:     BigInteger unrounded = parts[0];
 733:     if (parts[1].signum () == 0) // no remainder, no rounding necessary
 734:       return new BigDecimal (unrounded, newScale);
 735: 
 736:     if (roundingMode == ROUND_UNNECESSARY)
 737:       throw new ArithmeticException ("Rounding necessary");
 738: 
 739:     int sign = intVal.signum () * valIntVal.signum ();
 740: 
 741:     if (roundingMode == ROUND_CEILING)
 742:       roundingMode = (sign > 0) ? ROUND_UP : ROUND_DOWN;
 743:     else if (roundingMode == ROUND_FLOOR)
 744:       roundingMode = (sign < 0) ? ROUND_UP : ROUND_DOWN;
 745:     else
 746:       {
 747:     // half is -1 if remainder*2 < positive intValue (*power), 0 if equal,
 748:     // 1 if >. This implies that the remainder to round is less than,
 749:     // equal to, or greater than half way to the next digit.
 750:     BigInteger posRemainder
 751:       = parts[1].signum () < 0 ? parts[1].negate() : parts[1];
 752:     valIntVal = valIntVal.signum () < 0 ? valIntVal.negate () : valIntVal;
 753:     int half = posRemainder.shiftLeft(1).compareTo(valIntVal);
 754: 
 755:     switch(roundingMode)
 756:       {
 757:       case ROUND_HALF_UP:
 758:         roundingMode = (half < 0) ? ROUND_DOWN : ROUND_UP;
 759:         break;
 760:       case ROUND_HALF_DOWN:
 761:         roundingMode = (half > 0) ? ROUND_UP : ROUND_DOWN;
 762:         break;
 763:       case ROUND_HALF_EVEN:
 764:         if (half < 0)
 765:           roundingMode = ROUND_DOWN;
 766:         else if (half > 0)
 767:           roundingMode = ROUND_UP;
 768:         else if (unrounded.testBit(0)) // odd, then ROUND_HALF_UP
 769:           roundingMode = ROUND_UP;
 770:         else                           // even, ROUND_HALF_DOWN
 771:           roundingMode = ROUND_DOWN;
 772:         break;
 773:       }
 774:       }
 775: 
 776:     if (roundingMode == ROUND_UP)
 777:       unrounded = unrounded.add (BigInteger.valueOf (sign > 0 ? 1 : -1));
 778: 
 779:     // roundingMode == ROUND_DOWN
 780:     return new BigDecimal (unrounded, newScale);
 781:   }
 782:   
 783:   /**
 784:    * Performs division, if the resulting quotient requires rounding
 785:    * (has a nonterminating decimal expansion), 
 786:    * an ArithmeticException is thrown. 
 787:    * #see divide(BigDecimal, int, int)
 788:    * @since 1.5
 789:    */
 790:   public BigDecimal divide(BigDecimal divisor)
 791:     throws ArithmeticException, IllegalArgumentException 
 792:   {
 793:     return divide(divisor, scale, ROUND_UNNECESSARY);
 794:   }
 795: 
 796:   /**
 797:    * Returns a BigDecimal whose value is the remainder in the quotient
 798:    * this / val.  This is obtained by 
 799:    * subtract(divideToIntegralValue(val).multiply(val)).  
 800:    * @param val the divisor
 801:    * @return a BigDecimal whose value is the remainder
 802:    * @throws ArithmeticException if val == 0
 803:    * @since 1.5
 804:    */
 805:   public BigDecimal remainder(BigDecimal val)
 806:   {
 807:     return subtract(divideToIntegralValue(val).multiply(val));
 808:   }
 809: 
 810:   /**
 811:    * Returns a BigDecimal array, the first element of which is the integer part
 812:    * of this / val, and the second element of which is the remainder of 
 813:    * that quotient.
 814:    * @param val the divisor
 815:    * @return the above described BigDecimal array
 816:    * @throws ArithmeticException if val == 0
 817:    * @since 1.5
 818:    */
 819:   public BigDecimal[] divideAndRemainder(BigDecimal val)
 820:   {
 821:     BigDecimal[] result = new BigDecimal[2];
 822:     result[0] = divideToIntegralValue(val);
 823:     result[1] = subtract(result[0].multiply(val));
 824:     return result;
 825:   }
 826:   
 827:   /**
 828:    * Returns a BigDecimal whose value is the integer part of the quotient 
 829:    * this / val.  The preferred scale is this.scale - val.scale.
 830:    * @param val the divisor
 831:    * @return a BigDecimal whose value is the integer part of this / val.
 832:    * @throws ArithmeticException if val == 0
 833:    * @since 1.5
 834:    */
 835:   public BigDecimal divideToIntegralValue(BigDecimal val)
 836:   {
 837:     return divide(val, ROUND_DOWN).floor().setScale(scale - val.scale, ROUND_DOWN);
 838:   }
 839:   
 840:   /**
 841:    * Mutates this BigDecimal into one with no fractional part, whose value is 
 842:    * equal to the largest integer that is <= to this BigDecimal.  Note that
 843:    * since this method is private it is okay to mutate this BigDecimal.
 844:    * @return the BigDecimal obtained through the floor operation on this 
 845:    * BigDecimal.
 846:    */
 847:   private BigDecimal floor()
 848:   {
 849:     if (scale <= 0)
 850:       return this;
 851:     String intValStr = intVal.toString();
 852:     intValStr = intValStr.substring(0, intValStr.length() - scale);
 853:     intVal = new BigInteger(intValStr).multiply(BigInteger.TEN.pow(scale));
 854:     return this;
 855:   }
 856:     
 857:   public int compareTo (BigDecimal val) 
 858:   {
 859:     if (scale == val.scale)
 860:       return intVal.compareTo (val.intVal);
 861: 
 862:     BigInteger thisParts[] = 
 863:       intVal.divideAndRemainder (BigInteger.TEN.pow (scale));
 864:     BigInteger valParts[] =
 865:       val.intVal.divideAndRemainder (BigInteger.TEN.pow (val.scale));
 866:     
 867:     int compare;
 868:     if ((compare = thisParts[0].compareTo (valParts[0])) != 0)
 869:       return compare;
 870: 
 871:     // quotients are the same, so compare remainders
 872: 
 873:     // Add some trailing zeros to the remainder with the smallest scale
 874:     if (scale < val.scale)
 875:       thisParts[1] = thisParts[1].multiply
 876:             (BigInteger.valueOf (10).pow (val.scale - scale));
 877:     else if (scale > val.scale)
 878:       valParts[1] = valParts[1].multiply
 879:             (BigInteger.valueOf (10).pow (scale - val.scale));
 880: 
 881:     // and compare them
 882:     return thisParts[1].compareTo (valParts[1]);
 883:   }
 884: 
 885:   public boolean equals (Object o) 
 886:   {
 887:     return (o instanceof BigDecimal 
 888:         && scale == ((BigDecimal) o).scale
 889:         && compareTo ((BigDecimal) o) == 0);
 890:   }
 891: 
 892:   public int hashCode() 
 893:   {
 894:     return intValue() ^ scale;
 895:   }
 896: 
 897:   public BigDecimal max (BigDecimal val)
 898:   {
 899:     switch (compareTo (val)) 
 900:       {
 901:       case 1:
 902:     return this;
 903:       default:
 904:     return val;
 905:       }
 906:   }
 907: 
 908:   public BigDecimal min (BigDecimal val) 
 909:   {
 910:     switch (compareTo (val)) 
 911:       {
 912:       case -1:
 913:     return this;
 914:       default:
 915:     return val;
 916:       }
 917:   }
 918: 
 919:   public BigDecimal movePointLeft (int n)
 920:   {
 921:     return (n < 0) ? movePointRight (-n) : new BigDecimal (intVal, scale + n);
 922:   }
 923: 
 924:   public BigDecimal movePointRight (int n)
 925:   {
 926:     if (n < 0)
 927:       return movePointLeft (-n);
 928: 
 929:     if (scale >= n)
 930:       return new BigDecimal (intVal, scale - n);
 931: 
 932:     return new BigDecimal (intVal.multiply 
 933:                (BigInteger.TEN.pow (n - scale)), 0);
 934:   }
 935: 
 936:   public int signum () 
 937:   {
 938:     return intVal.signum ();
 939:   }
 940: 
 941:   public int scale () 
 942:   {
 943:     return scale;
 944:   }
 945:   
 946:   public BigInteger unscaledValue()
 947:   {
 948:     return intVal;
 949:   }
 950: 
 951:   public BigDecimal abs () 
 952:   {
 953:     return new BigDecimal (intVal.abs (), scale);
 954:   }
 955: 
 956:   public BigDecimal negate () 
 957:   {
 958:     return new BigDecimal (intVal.negate (), scale);
 959:   }
 960:   
 961:   /**
 962:    * Returns a BigDecimal whose value is found first by negating this via
 963:    * the negate() method, then by rounding according to the MathContext mc.
 964:    * @param mc the MathContext for rounding
 965:    * @return a BigDecimal whose value is approximately (-this)
 966:    * @throws ArithmeticException if the value is inexact but the rounding mode
 967:    * is RoundingMode.UNNECESSARY
 968:    * @since 1.5
 969:    */
 970:   public BigDecimal negate(MathContext mc)
 971:   {
 972:     BigDecimal result = negate();
 973:     if (mc.getPrecision() != 0)
 974:       result = result.round(mc);
 975:     return result;
 976:   }
 977:   
 978:   /**
 979:    * Returns this BigDecimal.  This is included for symmetry with the 
 980:    * method negate().
 981:    * @return this
 982:    * @since 1.5
 983:    */
 984:   public BigDecimal plus()
 985:   {
 986:     return this;
 987:   }
 988:   
 989:   /**
 990:    * Returns a BigDecimal whose value is found by rounding <code>this</code> 
 991:    * according to the MathContext.  This is the same as round(MathContext).
 992:    * @param mc the MathContext for rounding
 993:    * @return a BigDecimal whose value is <code>this</code> before being rounded
 994:    * @throws ArithmeticException if the value is inexact but the rounding mode
 995:    * is RoundingMode.UNNECESSARY
 996:    * @since 1.5
 997:    */
 998:   public BigDecimal plus(MathContext mc)
 999:   {
1000:     return round(mc);
1001:   }
1002:   
1003:   /**
1004:    * Returns a BigDecimal which is this BigDecimal rounded according to the
1005:    * MathContext rounding settings.
1006:    * @param mc the MathContext that tells us how to round
1007:    * @return the rounded BigDecimal
1008:    */
1009:   public BigDecimal round(MathContext mc)
1010:   {
1011:     int mcPrecision = mc.getPrecision();
1012:     int numToChop = precision() - mcPrecision;
1013:     // If mc specifies not to chop any digits or if we've already chopped 
1014:     // enough digits (say by using a MathContext in the constructor for this
1015:     // BigDecimal) then just return this.
1016:     if (mcPrecision == 0 || numToChop <= 0)
1017:       return this;
1018:     
1019:     // Make a new BigDecimal which is the correct power of 10 to chop off
1020:     // the required number of digits and then call divide.
1021:     BigDecimal div = new BigDecimal(BigInteger.TEN.pow(numToChop));
1022:     BigDecimal rounded = divide(div, scale, mc.getRoundingMode().ordinal());
1023:     rounded.scale -= numToChop;
1024:     rounded.precision = mcPrecision;
1025:     return rounded;
1026:   }
1027:   
1028:   /**
1029:    * Returns the precision of this BigDecimal (the number of digits in the
1030:    * unscaled value).  The precision of a zero value is 1.
1031:    * @return the number of digits in the unscaled value, or 1 if the value 
1032:    * is zero.
1033:    */
1034:   public int precision()
1035:   {
1036:     if (precision == 0)
1037:       {
1038:     String s = intVal.toString();
1039:     precision = s.length() - (( s.charAt(0) == '-' ) ? 1 : 0);
1040:       }
1041:     return precision;
1042:   }
1043:   
1044:   /**
1045:    * Returns the String representation of this BigDecimal, using scientific
1046:    * notation if necessary.  The following steps are taken to generate
1047:    * the result:
1048:    * 
1049:    * 1. the BigInteger unscaledValue's toString method is called and if
1050:    * <code>scale == 0<code> is returned.
1051:    * 2. an <code>int adjExp</code> is created which is equal to the negation
1052:    * of <code>scale</code> plus the number of digits in the unscaled value, 
1053:    * minus one.
1054:    * 3. if <code>scale >= 0 && adjExp >= -6</code> then we represent this 
1055:    * BigDecimal without scientific notation.  A decimal is added if the 
1056:    * scale is positive and zeros are prepended as necessary.
1057:    * 4. if scale is negative or adjExp is less than -6 we use scientific
1058:    * notation.  If the unscaled value has more than one digit, a decimal 
1059:    * as inserted after the first digit, the character 'E' is appended
1060:    * and adjExp is appended.
1061:    */
1062:   public String toString()
1063:   {
1064:     // bigStr is the String representation of the unscaled value.  If
1065:     // scale is zero we simply return this.
1066:     String bigStr = intVal.toString();
1067:     if (scale == 0)
1068:       return bigStr;
1069: 
1070:     boolean negative = (bigStr.charAt(0) == '-');
1071:     int point = bigStr.length() - scale - (negative ? 1 : 0);
1072: 
1073:     StringBuilder val = new StringBuilder();
1074: 
1075:     if (scale >= 0 && (point - 1) >= -6)
1076:       {
1077:     // Convert to character form without scientific notation.
1078:         if (point <= 0)
1079:           {
1080:             // Zeros need to be prepended to the StringBuilder.
1081:             if (negative)
1082:               val.append('-');
1083:             // Prepend a '0' and a '.' and then as many more '0's as necessary.
1084:             val.append('0').append('.');
1085:             while (point < 0)
1086:               {
1087:                 val.append('0');
1088:                 point++;
1089:               }
1090:             // Append the unscaled value.
1091:             val.append(bigStr.substring(negative ? 1 : 0));
1092:           }
1093:         else
1094:           {
1095:             // No zeros need to be prepended so the String is simply the 
1096:             // unscaled value with the decimal point inserted.
1097:             val.append(bigStr);
1098:             val.insert(point + (negative ? 1 : 0), '.');
1099:           }
1100:       }
1101:     else
1102:       {
1103:         // We must use scientific notation to represent this BigDecimal.
1104:         val.append(bigStr);
1105:         // If there is more than one digit in the unscaled value we put a 
1106:         // decimal after the first digit.
1107:         if (bigStr.length() > 1)
1108:           val.insert( ( negative ? 2 : 1 ), '.');
1109:         // And then append 'E' and the exponent = (point - 1).
1110:         val.append('E');
1111:         if (point - 1 >= 0)
1112:           val.append('+');
1113:         val.append( point - 1 );
1114:       }
1115:     return val.toString();
1116:   }
1117: 
1118:   /**
1119:    * Returns the String representation of this BigDecimal, using engineering
1120:    * notation if necessary.  This is similar to toString() but when exponents 
1121:    * are used the exponent is made to be a multiple of 3 such that the integer
1122:    * part is between 1 and 999.
1123:    * 
1124:    * @return a String representation of this BigDecimal in engineering notation
1125:    * @since 1.5
1126:    */
1127:   public String toEngineeringString()
1128:   {
1129:     // bigStr is the String representation of the unscaled value.  If
1130:     // scale is zero we simply return this.
1131:     String bigStr = intVal.toString();
1132:     if (scale == 0)
1133:       return bigStr;
1134: 
1135:     boolean negative = (bigStr.charAt(0) == '-');
1136:     int point = bigStr.length() - scale - (negative ? 1 : 0);
1137: 
1138:     // This is the adjusted exponent described above.
1139:     int adjExp = point - 1;
1140:     StringBuilder val = new StringBuilder();
1141: 
1142:     if (scale >= 0 && adjExp >= -6)
1143:       {
1144:         // Convert to character form without scientific notation.
1145:         if (point <= 0)
1146:           {
1147:             // Zeros need to be prepended to the StringBuilder.
1148:             if (negative)
1149:               val.append('-');
1150:             // Prepend a '0' and a '.' and then as many more '0's as necessary.
1151:             val.append('0').append('.');
1152:             while (point < 0)
1153:               {
1154:                 val.append('0');
1155:                 point++;
1156:               }
1157:             // Append the unscaled value.
1158:             val.append(bigStr.substring(negative ? 1 : 0));
1159:           }
1160:         else
1161:           {
1162:             // No zeros need to be prepended so the String is simply the 
1163:             // unscaled value with the decimal point inserted.
1164:             val.append(bigStr);
1165:             val.insert(point + (negative ? 1 : 0), '.');
1166:           }
1167:       }
1168:     else
1169:       {
1170:         // We must use scientific notation to represent this BigDecimal.
1171:         // The exponent must be a multiple of 3 and the integer part
1172:         // must be between 1 and 999.
1173:         val.append(bigStr);        
1174:         int zeros = adjExp % 3;
1175:         int dot = 1;
1176:         if (adjExp > 0)
1177:           {
1178:             // If the exponent is positive we just move the decimal to the
1179:             // right and decrease the exponent until it is a multiple of 3.
1180:             dot += zeros;
1181:             adjExp -= zeros;
1182:           }
1183:         else
1184:           {
1185:             // If the exponent is negative then we move the dot to the right
1186:             // and decrease the exponent (increase its magnitude) until 
1187:             // it is a multiple of 3.  Note that this is not adjExp -= zeros
1188:             // because the mod operator doesn't give us the distance to the 
1189:             // correct multiple of 3.  (-5 mod 3) is -2 but the distance from
1190:             // -5 to the correct multiple of 3 (-6) is 1, not 2.
1191:             if (zeros == -2)
1192:               {
1193:                 dot += 1;
1194:                 adjExp -= 1;
1195:               }
1196:             else if (zeros == -1)
1197:               {
1198:                 dot += 2;
1199:                 adjExp -= 2;
1200:               }
1201:           }
1202: 
1203:         // Either we have to append zeros because, for example, 1.1E+5 should
1204:         // be 110E+3, or we just have to put the decimal in the right place.
1205:         if (dot > val.length())
1206:           {
1207:             while (dot > val.length())
1208:               val.append('0');
1209:           }
1210:         else if (bigStr.length() > dot)
1211:           val.insert(dot + (negative ? 1 : 0), '.');
1212:         
1213:         // And then append 'E' and the exponent (adjExp).
1214:         val.append('E');
1215:         if (adjExp >= 0)
1216:           val.append('+');
1217:         val.append(adjExp);
1218:       }
1219:     return val.toString();
1220:   }
1221:   
1222:   /**
1223:    * Returns a String representation of this BigDecimal without using 
1224:    * scientific notation.  This is how toString() worked for releases 1.4
1225:    * and previous.  Zeros may be added to the end of the String.  For
1226:    * example, an unscaled value of 1234 and a scale of -3 would result in 
1227:    * the String 1234000, but the toString() method would return 
1228:    * 1.234E+6.
1229:    * @return a String representation of this BigDecimal
1230:    * @since 1.5
1231:    */
1232:   public String toPlainString()
1233:   {
1234:     // If the scale is zero we simply return the String representation of the 
1235:     // unscaled value.
1236:     String bigStr = intVal.toString();
1237:     if (scale == 0)
1238:       return bigStr;
1239: 
1240:     // Remember if we have to put a negative sign at the start.
1241:     boolean negative = (bigStr.charAt(0) == '-');
1242: 
1243:     int point = bigStr.length() - scale - (negative ? 1 : 0);
1244: 
1245:     StringBuffer sb = new StringBuffer(bigStr.length() + 2
1246:                                        + (point <= 0 ? (-point + 1) : 0));
1247:     if (point <= 0)
1248:       {
1249:         // We have to prepend zeros and a decimal point.
1250:         if (negative)
1251:           sb.append('-');
1252:         sb.append('0').append('.');
1253:         while (point < 0)
1254:           {
1255:             sb.append('0');
1256:             point++;
1257:           }
1258:         sb.append(bigStr.substring(negative ? 1 : 0));
1259:       }
1260:     else if (point < bigStr.length())
1261:       {
1262:         // No zeros need to be prepended or appended, just put the decimal
1263:         // in the right place.
1264:         sb.append(bigStr);
1265:         sb.insert(point + (negative ? 1 : 0), '.');
1266:       }
1267:     else
1268:       {
1269:         // We must append zeros instead of using scientific notation.
1270:         sb.append(bigStr);
1271:         for (int i = bigStr.length(); i < point; i++)
1272:           sb.append('0');
1273:       }
1274:     return sb.toString();
1275:   }
1276:   
1277:   /**
1278:    * Converts this BigDecimal to a BigInteger.  Any fractional part will
1279:    * be discarded.
1280:    * @return a BigDecimal whose value is equal to floor[this]
1281:    */
1282:   public BigInteger toBigInteger () 
1283:   {
1284:     // If scale > 0 then we must divide, if scale > 0 then we must multiply,
1285:     // and if scale is zero then we just return intVal;
1286:     if (scale > 0)
1287:       return intVal.divide (BigInteger.TEN.pow (scale));
1288:     else if (scale < 0)
1289:       return intVal.multiply(BigInteger.TEN.pow(-scale));
1290:     return intVal;
1291:   }
1292:   
1293:   /**
1294:    * Converts this BigDecimal into a BigInteger, throwing an 
1295:    * ArithmeticException if the conversion is not exact.
1296:    * @return a BigInteger whose value is equal to the value of this BigDecimal
1297:    * @since 1.5
1298:    */
1299:   public BigInteger toBigIntegerExact()
1300:   {
1301:     if (scale > 0)
1302:       {
1303:         // If we have to divide, we must check if the result is exact.
1304:         BigInteger[] result = 
1305:           intVal.divideAndRemainder(BigInteger.TEN.pow(scale));
1306:         if (result[1].equals(BigInteger.ZERO))
1307:           return result[0];
1308:         throw new ArithmeticException("No exact BigInteger representation");
1309:       }
1310:     else if (scale < 0)
1311:       // If we're multiplying instead, then we needn't check for exactness.
1312:       return intVal.multiply(BigInteger.TEN.pow(-scale));
1313:     // If the scale is zero we can simply return intVal.
1314:     return intVal;
1315:   }
1316: 
1317:   public int intValue () 
1318:   {
1319:     return toBigInteger ().intValue ();
1320:   }
1321:   
1322:   /**
1323:    * Returns a BigDecimal which is numerically equal to this BigDecimal but 
1324:    * with no trailing zeros in the representation.  For example, if this 
1325:    * BigDecimal has [unscaledValue, scale] = [6313000, 4] this method returns
1326:    * a BigDecimal with [unscaledValue, scale] = [6313, 1].  As another 
1327:    * example, [12400, -2] would become [124, -4].
1328:    * @return a numerically equal BigDecimal with no trailing zeros
1329:    */
1330:   public BigDecimal stripTrailingZeros()  
1331:   {
1332:     String intValStr = intVal.toString();
1333:     int newScale = scale;
1334:     int pointer = intValStr.length() - 1;
1335:     // This loop adjusts pointer which will be used to give us the substring
1336:     // of intValStr to use in our new BigDecimal, and also accordingly
1337:     // adjusts the scale of our new BigDecimal.
1338:     while (intValStr.charAt(pointer) == '0')
1339:       {
1340:         pointer --;
1341:         newScale --;
1342:       }
1343:     // Create a new BigDecimal with the appropriate substring and then
1344:     // set its scale.
1345:     BigDecimal result = new BigDecimal(intValStr.substring(0, pointer + 1));    
1346:     result.scale = newScale;
1347:     return result;
1348:   }
1349: 
1350:   public long longValue ()
1351:   {
1352:     return toBigInteger().longValue();
1353:   }
1354: 
1355:   public float floatValue() 
1356:   {
1357:     return Float.valueOf(toString()).floatValue();
1358:   }
1359: 
1360:   public double doubleValue() 
1361:   {
1362:     return Double.valueOf(toString()).doubleValue();
1363:   }
1364: 
1365:   public BigDecimal setScale (int scale) throws ArithmeticException
1366:   {
1367:     return setScale (scale, ROUND_UNNECESSARY);
1368:   }
1369: 
1370:   public BigDecimal setScale (int scale, int roundingMode)
1371:     throws ArithmeticException, IllegalArgumentException
1372:   {
1373:     // NOTE: The 1.5 JRE doesn't throw this, ones prior to it do and
1374:     // the spec says it should. Nevertheless, if 1.6 doesn't fix this
1375:     // we should consider removing it.
1376:     if( scale < 0 ) throw new ArithmeticException("Scale parameter < 0.");
1377:     return divide (ONE, scale, roundingMode);
1378:   }
1379:   
1380:   /**
1381:    * Returns a BigDecimal whose value is the same as this BigDecimal but whose
1382:    * representation has a scale of <code>newScale</code>.  If the scale is
1383:    * reduced then rounding may occur, according to the RoundingMode.
1384:    * @param newScale
1385:    * @param roundingMode
1386:    * @return a BigDecimal whose scale is as given, whose value is 
1387:    * <code>this</code> with possible rounding
1388:    * @throws ArithmeticException if the rounding mode is UNNECESSARY but 
1389:    * rounding is required 
1390:    * @since 1.5
1391:    */
1392:   public BigDecimal setScale(int newScale, RoundingMode roundingMode)
1393:   {
1394:     return setScale(newScale, roundingMode.ordinal());
1395:   }
1396:   
1397:   /**
1398:    * Returns a new BigDecimal constructed from the BigDecimal(String) 
1399:    * constructor using the Double.toString(double) method to obtain
1400:    * the String.
1401:    * @param val the double value used in Double.toString(double)
1402:    * @return a BigDecimal representation of val
1403:    * @throws NumberFormatException if val is NaN or infinite
1404:    * @since 1.5
1405:    */
1406:   public static BigDecimal valueOf(double val)
1407:   {
1408:     if (Double.isInfinite(val) || Double.isNaN(val))
1409:       throw new NumberFormatException("argument cannot be NaN or infinite.");
1410:     return new BigDecimal(Double.toString(val));
1411:   }
1412:   
1413:   /**
1414:    * Returns a BigDecimal whose numerical value is the numerical value
1415:    * of this BigDecimal multiplied by 10 to the power of <code>n</code>. 
1416:    * @param n the power of ten
1417:    * @return the new BigDecimal
1418:    * @since 1.5
1419:    */
1420:   public BigDecimal scaleByPowerOfTen(int n)
1421:   {
1422:     BigDecimal result = new BigDecimal(intVal, scale - n);
1423:     result.precision = precision;
1424:     return result;
1425:   }
1426:   
1427:   /**
1428:    * Returns a BigDecimal whose value is <code>this</code> to the power of 
1429:    * <code>n</code>. 
1430:    * @param n the power
1431:    * @return the new BigDecimal
1432:    * @since 1.5
1433:    */
1434:   public BigDecimal pow(int n)
1435:   {
1436:     if (n < 0 || n > 999999999)
1437:       throw new ArithmeticException("n must be between 0 and 999999999");
1438:     BigDecimal result = new BigDecimal(intVal.pow(n), scale * n);
1439:     return result;
1440:   }
1441:   
1442:   /**
1443:    * Returns a BigDecimal whose value is determined by first calling pow(n)
1444:    * and then by rounding according to the MathContext mc.
1445:    * @param n the power
1446:    * @param mc the MathContext
1447:    * @return the new BigDecimal
1448:    * @throws ArithmeticException if n < 0 or n > 999999999 or if the result is
1449:    * inexact but the rounding is RoundingMode.UNNECESSARY
1450:    * @since 1.5
1451:    */
1452:   public BigDecimal pow(int n, MathContext mc)
1453:   {
1454:     // FIXME: The specs claim to use the X3.274-1996 algorithm.  We
1455:     // currently do not.
1456:     return pow(n).round(mc);
1457:   }
1458:   
1459:   /**
1460:    * Returns a BigDecimal whose value is the absolute value of this BigDecimal
1461:    * with rounding according to the given MathContext.
1462:    * @param mc the MathContext
1463:    * @return the new BigDecimal
1464:    */
1465:   public BigDecimal abs(MathContext mc)
1466:   {
1467:     BigDecimal result = abs();
1468:     result = result.round(mc);
1469:     return result;
1470:   }
1471:   
1472:   /**
1473:    * Returns the size of a unit in the last place of this BigDecimal.  This
1474:    * returns a BigDecimal with [unscaledValue, scale] = [1, this.scale()].
1475:    * @return the size of a unit in the last place of <code>this</code>.
1476:    * @since 1.5
1477:    */
1478:   public BigDecimal ulp()
1479:   {
1480:     return new BigDecimal(BigInteger.ONE, scale);
1481:   }
1482:   
1483:   /**
1484:    * Converts this BigDecimal to a long value.
1485:    * @return the long value
1486:    * @throws ArithmeticException if rounding occurs or if overflow occurs
1487:    * @since 1.5
1488:    */
1489:   public long longValueExact()
1490:   {
1491:     // Set scale will throw an exception if rounding occurs.
1492:     BigDecimal temp = setScale(0, ROUND_UNNECESSARY);
1493:     BigInteger tempVal = temp.intVal;
1494:     // Check for overflow.
1495:     long result = intVal.longValue();
1496:     if (tempVal.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 1
1497:         || (result < 0 && signum() == 1) || (result > 0 && signum() == -1))
1498:       throw new ArithmeticException("this BigDecimal is too " +
1499:             "large to fit into the return type");
1500:     
1501:     return intVal.longValue();
1502:   }
1503:   
1504:   /**
1505:    * Converts this BigDecimal into an int by first calling longValueExact
1506:    * and then checking that the <code>long</code> returned from that
1507:    * method fits into an <code>int</code>.
1508:    * @return an int whose value is <code>this</code>
1509:    * @throws ArithmeticException if this BigDecimal has a fractional part
1510:    * or is too large to fit into an int.
1511:    * @since 1.5
1512:    */
1513:   public int intValueExact()
1514:   {
1515:     long temp = longValueExact();
1516:     int result = (int)temp;
1517:     if (result != temp)
1518:       throw new ArithmeticException ("this BigDecimal cannot fit into an int");
1519:     return result;
1520:   }
1521:   
1522:   /**
1523:    * Converts this BigDecimal into a byte by first calling longValueExact
1524:    * and then checking that the <code>long</code> returned from that
1525:    * method fits into a <code>byte</code>.
1526:    * @return a byte whose value is <code>this</code>
1527:    * @throws ArithmeticException if this BigDecimal has a fractional part
1528:    * or is too large to fit into a byte.
1529:    * @since 1.5
1530:    */
1531:   public byte byteValueExact()
1532:   {
1533:     long temp = longValueExact();
1534:     byte result = (byte)temp;
1535:     if (result != temp)
1536:       throw new ArithmeticException ("this BigDecimal cannot fit into a byte");
1537:     return result;
1538:   }
1539:   
1540:   /**
1541:    * Converts this BigDecimal into a short by first calling longValueExact
1542:    * and then checking that the <code>long</code> returned from that
1543:    * method fits into a <code>short</code>.
1544:    * @return a short whose value is <code>this</code>
1545:    * @throws ArithmeticException if this BigDecimal has a fractional part
1546:    * or is too large to fit into a short.
1547:    * @since 1.5
1548:    */
1549:   public short shortValueExact()
1550:   {
1551:     long temp = longValueExact();
1552:     short result = (short)temp;
1553:     if (result != temp)
1554:       throw new ArithmeticException ("this BigDecimal cannot fit into a short");
1555:     return result;
1556:   }
1557: }