Source for java.util.HashMap

   1: /* HashMap.java -- a class providing a basic hashtable data structure,
   2:    mapping Object --> Object
   3:    Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005  Free Software Foundation, Inc.
   4: 
   5: This file is part of GNU Classpath.
   6: 
   7: GNU Classpath is free software; you can redistribute it and/or modify
   8: it under the terms of the GNU General Public License as published by
   9: the Free Software Foundation; either version 2, or (at your option)
  10: any later version.
  11: 
  12: GNU Classpath is distributed in the hope that it will be useful, but
  13: WITHOUT ANY WARRANTY; without even the implied warranty of
  14: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15: General Public License for more details.
  16: 
  17: You should have received a copy of the GNU General Public License
  18: along with GNU Classpath; see the file COPYING.  If not, write to the
  19: Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20: 02110-1301 USA.
  21: 
  22: Linking this library statically or dynamically with other modules is
  23: making a combined work based on this library.  Thus, the terms and
  24: conditions of the GNU General Public License cover the whole
  25: combination.
  26: 
  27: As a special exception, the copyright holders of this library give you
  28: permission to link this library with independent modules to produce an
  29: executable, regardless of the license terms of these independent
  30: modules, and to copy and distribute the resulting executable under
  31: terms of your choice, provided that you also meet, for each linked
  32: independent module, the terms and conditions of the license of that
  33: module.  An independent module is a module which is not derived from
  34: or based on this library.  If you modify this library, you may extend
  35: this exception to your version of the library, but you are not
  36: obligated to do so.  If you do not wish to do so, delete this
  37: exception statement from your version. */
  38: 
  39: 
  40: package java.util;
  41: 
  42: import java.io.IOException;
  43: import java.io.ObjectInputStream;
  44: import java.io.ObjectOutputStream;
  45: import java.io.Serializable;
  46: 
  47: // NOTE: This implementation is very similar to that of Hashtable. If you fix
  48: // a bug in here, chances are you should make a similar change to the Hashtable
  49: // code.
  50: 
  51: // NOTE: This implementation has some nasty coding style in order to
  52: // support LinkedHashMap, which extends this.
  53: 
  54: /**
  55:  * This class provides a hashtable-backed implementation of the
  56:  * Map interface.
  57:  * <p>
  58:  *
  59:  * It uses a hash-bucket approach; that is, hash collisions are handled
  60:  * by linking the new node off of the pre-existing node (or list of
  61:  * nodes).  In this manner, techniques such as linear probing (which
  62:  * can cause primary clustering) and rehashing (which does not fit very
  63:  * well with Java's method of precomputing hash codes) are avoided.
  64:  * <p>
  65:  *
  66:  * Under ideal circumstances (no collisions), HashMap offers O(1)
  67:  * performance on most operations (<code>containsValue()</code> is,
  68:  * of course, O(n)).  In the worst case (all keys map to the same
  69:  * hash code -- very unlikely), most operations are O(n).
  70:  * <p>
  71:  *
  72:  * HashMap is part of the JDK1.2 Collections API.  It differs from
  73:  * Hashtable in that it accepts the null key and null values, and it
  74:  * does not support "Enumeration views." Also, it is not synchronized;
  75:  * if you plan to use it in multiple threads, consider using:<br>
  76:  * <code>Map m = Collections.synchronizedMap(new HashMap(...));</code>
  77:  * <p>
  78:  *
  79:  * The iterators are <i>fail-fast</i>, meaning that any structural
  80:  * modification, except for <code>remove()</code> called on the iterator
  81:  * itself, cause the iterator to throw a
  82:  * <code>ConcurrentModificationException</code> rather than exhibit
  83:  * non-deterministic behavior.
  84:  *
  85:  * @author Jon Zeppieri
  86:  * @author Jochen Hoenicke
  87:  * @author Bryce McKinlay
  88:  * @author Eric Blake (ebb9@email.byu.edu)
  89:  * @see Object#hashCode()
  90:  * @see Collection
  91:  * @see Map
  92:  * @see TreeMap
  93:  * @see LinkedHashMap
  94:  * @see IdentityHashMap
  95:  * @see Hashtable
  96:  * @since 1.2
  97:  * @status updated to 1.4
  98:  */
  99: public class HashMap<K, V> extends AbstractMap<K, V>
 100:   implements Map<K, V>, Cloneable, Serializable
 101: {
 102:   /**
 103:    * Default number of buckets. This is the value the JDK 1.3 uses. Some
 104:    * early documentation specified this value as 101. That is incorrect.
 105:    * Package visible for use by HashSet.
 106:    */
 107:   static final int DEFAULT_CAPACITY = 11;
 108: 
 109:   /**
 110:    * The default load factor; this is explicitly specified by the spec.
 111:    * Package visible for use by HashSet.
 112:    */
 113:   static final float DEFAULT_LOAD_FACTOR = 0.75f;
 114: 
 115:   /**
 116:    * Compatible with JDK 1.2.
 117:    */
 118:   private static final long serialVersionUID = 362498820763181265L;
 119: 
 120:   /**
 121:    * The rounded product of the capacity and the load factor; when the number
 122:    * of elements exceeds the threshold, the HashMap calls
 123:    * <code>rehash()</code>.
 124:    * @serial the threshold for rehashing
 125:    */
 126:   private int threshold;
 127: 
 128:   /**
 129:    * Load factor of this HashMap:  used in computing the threshold.
 130:    * Package visible for use by HashSet.
 131:    * @serial the load factor
 132:    */
 133:   final float loadFactor;
 134: 
 135:   /**
 136:    * Array containing the actual key-value mappings.
 137:    * Package visible for use by nested and subclasses.
 138:    */
 139:   transient HashEntry<K, V>[] buckets;
 140: 
 141:   /**
 142:    * Counts the number of modifications this HashMap has undergone, used
 143:    * by Iterators to know when to throw ConcurrentModificationExceptions.
 144:    * Package visible for use by nested and subclasses.
 145:    */
 146:   transient int modCount;
 147: 
 148:   /**
 149:    * The size of this HashMap:  denotes the number of key-value pairs.
 150:    * Package visible for use by nested and subclasses.
 151:    */
 152:   transient int size;
 153: 
 154:   /**
 155:    * The cache for {@link #entrySet()}.
 156:    */
 157:   private transient Set<Map.Entry<K, V>> entries;
 158: 
 159:   /**
 160:    * Class to represent an entry in the hash table. Holds a single key-value
 161:    * pair. Package visible for use by subclass.
 162:    *
 163:    * @author Eric Blake (ebb9@email.byu.edu)
 164:    */
 165:   static class HashEntry<K, V> extends AbstractMap.SimpleEntry<K, V>
 166:   {
 167:     /**
 168:      * The next entry in the linked list. Package visible for use by subclass.
 169:      */
 170:     HashEntry<K, V> next;
 171: 
 172:     /**
 173:      * Simple constructor.
 174:      * @param key the key
 175:      * @param value the value
 176:      */
 177:     HashEntry(K key, V value)
 178:     {
 179:       super(key, value);
 180:     }
 181: 
 182:     /**
 183:      * Called when this entry is accessed via {@link #put(Object, Object)}.
 184:      * This version does nothing, but in LinkedHashMap, it must do some
 185:      * bookkeeping for access-traversal mode.
 186:      */
 187:     void access()
 188:     {
 189:     }
 190: 
 191:     /**
 192:      * Called when this entry is removed from the map. This version simply
 193:      * returns the value, but in LinkedHashMap, it must also do bookkeeping.
 194:      *
 195:      * @return the value of this key as it is removed
 196:      */
 197:     V cleanup()
 198:     {
 199:       return value;
 200:     }
 201:   }
 202: 
 203:   /**
 204:    * Construct a new HashMap with the default capacity (11) and the default
 205:    * load factor (0.75).
 206:    */
 207:   public HashMap()
 208:   {
 209:     this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR);
 210:   }
 211: 
 212:   /**
 213:    * Construct a new HashMap from the given Map, with initial capacity
 214:    * the greater of the size of <code>m</code> or the default of 11.
 215:    * <p>
 216:    *
 217:    * Every element in Map m will be put into this new HashMap.
 218:    *
 219:    * @param m a Map whose key / value pairs will be put into the new HashMap.
 220:    *        <b>NOTE: key / value pairs are not cloned in this constructor.</b>
 221:    * @throws NullPointerException if m is null
 222:    */
 223:   public HashMap(Map<? extends K, ? extends V> m)
 224:   {
 225:     this(Math.max(m.size() * 2, DEFAULT_CAPACITY), DEFAULT_LOAD_FACTOR);
 226:     putAll(m);
 227:   }
 228: 
 229:   /**
 230:    * Construct a new HashMap with a specific inital capacity and
 231:    * default load factor of 0.75.
 232:    *
 233:    * @param initialCapacity the initial capacity of this HashMap (&gt;=0)
 234:    * @throws IllegalArgumentException if (initialCapacity &lt; 0)
 235:    */
 236:   public HashMap(int initialCapacity)
 237:   {
 238:     this(initialCapacity, DEFAULT_LOAD_FACTOR);
 239:   }
 240: 
 241:   /**
 242:    * Construct a new HashMap with a specific inital capacity and load factor.
 243:    *
 244:    * @param initialCapacity the initial capacity (&gt;=0)
 245:    * @param loadFactor the load factor (&gt; 0, not NaN)
 246:    * @throws IllegalArgumentException if (initialCapacity &lt; 0) ||
 247:    *                                     ! (loadFactor &gt; 0.0)
 248:    */
 249:   public HashMap(int initialCapacity, float loadFactor)
 250:   {
 251:     if (initialCapacity < 0)
 252:       throw new IllegalArgumentException("Illegal Capacity: "
 253:                                          + initialCapacity);
 254:     if (! (loadFactor > 0)) // check for NaN too
 255:       throw new IllegalArgumentException("Illegal Load: " + loadFactor);
 256: 
 257:     if (initialCapacity == 0)
 258:       initialCapacity = 1;
 259:     buckets = (HashEntry<K, V>[]) new HashEntry[initialCapacity];
 260:     this.loadFactor = loadFactor;
 261:     threshold = (int) (initialCapacity * loadFactor);
 262:   }
 263: 
 264:   /**
 265:    * Returns the number of kay-value mappings currently in this Map.
 266:    *
 267:    * @return the size
 268:    */
 269:   public int size()
 270:   {
 271:     return size;
 272:   }
 273: 
 274:   /**
 275:    * Returns true if there are no key-value mappings currently in this Map.
 276:    *
 277:    * @return <code>size() == 0</code>
 278:    */
 279:   public boolean isEmpty()
 280:   {
 281:     return size == 0;
 282:   }
 283: 
 284:   /**
 285:    * Return the value in this HashMap associated with the supplied key,
 286:    * or <code>null</code> if the key maps to nothing.  NOTE: Since the value
 287:    * could also be null, you must use containsKey to see if this key
 288:    * actually maps to something.
 289:    *
 290:    * @param key the key for which to fetch an associated value
 291:    * @return what the key maps to, if present
 292:    * @see #put(Object, Object)
 293:    * @see #containsKey(Object)
 294:    */
 295:   public V get(Object key)
 296:   {
 297:     int idx = hash(key);
 298:     HashEntry<K, V> e = buckets[idx];
 299:     while (e != null)
 300:       {
 301:         if (equals(key, e.key))
 302:           return e.value;
 303:         e = e.next;
 304:       }
 305:     return null;
 306:   }
 307: 
 308:   /**
 309:    * Returns true if the supplied object <code>equals()</code> a key
 310:    * in this HashMap.
 311:    *
 312:    * @param key the key to search for in this HashMap
 313:    * @return true if the key is in the table
 314:    * @see #containsValue(Object)
 315:    */
 316:   public boolean containsKey(Object key)
 317:   {
 318:     int idx = hash(key);
 319:     HashEntry<K, V> e = buckets[idx];
 320:     while (e != null)
 321:       {
 322:         if (equals(key, e.key))
 323:           return true;
 324:         e = e.next;
 325:       }
 326:     return false;
 327:   }
 328: 
 329:   /**
 330:    * Puts the supplied value into the Map, mapped by the supplied key.
 331:    * The value may be retrieved by any object which <code>equals()</code>
 332:    * this key. NOTE: Since the prior value could also be null, you must
 333:    * first use containsKey if you want to see if you are replacing the
 334:    * key's mapping.
 335:    *
 336:    * @param key the key used to locate the value
 337:    * @param value the value to be stored in the HashMap
 338:    * @return the prior mapping of the key, or null if there was none
 339:    * @see #get(Object)
 340:    * @see Object#equals(Object)
 341:    */
 342:   public V put(K key, V value)
 343:   {
 344:     int idx = hash(key);
 345:     HashEntry<K, V> e = buckets[idx];
 346: 
 347:     while (e != null)
 348:       {
 349:         if (equals(key, e.key))
 350:           {
 351:             e.access(); // Must call this for bookkeeping in LinkedHashMap.
 352:         V r = e.value;
 353:             e.value = value;
 354:             return r;
 355:           }
 356:         else
 357:           e = e.next;
 358:       }
 359: 
 360:     // At this point, we know we need to add a new entry.
 361:     modCount++;
 362:     if (++size > threshold)
 363:       {
 364:         rehash();
 365:         // Need a new hash value to suit the bigger table.
 366:         idx = hash(key);
 367:       }
 368: 
 369:     // LinkedHashMap cannot override put(), hence this call.
 370:     addEntry(key, value, idx, true);
 371:     return null;
 372:   }
 373: 
 374:   /**
 375:    * Copies all elements of the given map into this hashtable.  If this table
 376:    * already has a mapping for a key, the new mapping replaces the current
 377:    * one.
 378:    *
 379:    * @param m the map to be hashed into this
 380:    */
 381:   public void putAll(Map<? extends K, ? extends V> m)
 382:   {
 383:     final Map<K,V> addMap = (Map<K,V>) m;
 384:     final Iterator<Map.Entry<K,V>> it = addMap.entrySet().iterator();
 385:     while (it.hasNext())
 386:       {
 387:     final Map.Entry<K,V> e = it.next();
 388:         // Optimize in case the Entry is one of our own.
 389:         if (e instanceof AbstractMap.SimpleEntry)
 390:           {
 391:             AbstractMap.SimpleEntry<? extends K, ? extends V> entry
 392:           = (AbstractMap.SimpleEntry<? extends K, ? extends V>) e;
 393:             put(entry.key, entry.value);
 394:           }
 395:         else
 396:           put(e.getKey(), e.getValue());
 397:       }
 398:   }
 399: 
 400:   /**
 401:    * Removes from the HashMap and returns the value which is mapped by the
 402:    * supplied key. If the key maps to nothing, then the HashMap remains
 403:    * unchanged, and <code>null</code> is returned. NOTE: Since the value
 404:    * could also be null, you must use containsKey to see if you are
 405:    * actually removing a mapping.
 406:    *
 407:    * @param key the key used to locate the value to remove
 408:    * @return whatever the key mapped to, if present
 409:    */
 410:   public V remove(Object key)
 411:   {
 412:     int idx = hash(key);
 413:     HashEntry<K, V> e = buckets[idx];
 414:     HashEntry<K, V> last = null;
 415: 
 416:     while (e != null)
 417:       {
 418:         if (equals(key, e.key))
 419:           {
 420:             modCount++;
 421:             if (last == null)
 422:               buckets[idx] = e.next;
 423:             else
 424:               last.next = e.next;
 425:             size--;
 426:             // Method call necessary for LinkedHashMap to work correctly.
 427:             return e.cleanup();
 428:           }
 429:         last = e;
 430:         e = e.next;
 431:       }
 432:     return null;
 433:   }
 434: 
 435:   /**
 436:    * Clears the Map so it has no keys. This is O(1).
 437:    */
 438:   public void clear()
 439:   {
 440:     if (size != 0)
 441:       {
 442:         modCount++;
 443:         Arrays.fill(buckets, null);
 444:         size = 0;
 445:       }
 446:   }
 447: 
 448:   /**
 449:    * Returns true if this HashMap contains a value <code>o</code>, such that
 450:    * <code>o.equals(value)</code>.
 451:    *
 452:    * @param value the value to search for in this HashMap
 453:    * @return true if at least one key maps to the value
 454:    * @see #containsKey(Object)
 455:    */
 456:   public boolean containsValue(Object value)
 457:   {
 458:     for (int i = buckets.length - 1; i >= 0; i--)
 459:       {
 460:         HashEntry<K, V> e = buckets[i];
 461:         while (e != null)
 462:           {
 463:             if (equals(value, e.value))
 464:               return true;
 465:             e = e.next;
 466:           }
 467:       }
 468:     return false;
 469:   }
 470: 
 471:   /**
 472:    * Returns a shallow clone of this HashMap. The Map itself is cloned,
 473:    * but its contents are not.  This is O(n).
 474:    *
 475:    * @return the clone
 476:    */
 477:   public Object clone()
 478:   {
 479:     HashMap<K, V> copy = null;
 480:     try
 481:       {
 482:         copy = (HashMap<K, V>) super.clone();
 483:       }
 484:     catch (CloneNotSupportedException x)
 485:       {
 486:         // This is impossible.
 487:       }
 488:     copy.buckets = (HashEntry<K, V>[]) new HashEntry[buckets.length];
 489:     copy.putAllInternal(this);
 490:     // Clear the entry cache. AbstractMap.clone() does the others.
 491:     copy.entries = null;
 492:     return copy;
 493:   }
 494: 
 495:   /**
 496:    * Returns a "set view" of this HashMap's keys. The set is backed by the
 497:    * HashMap, so changes in one show up in the other.  The set supports
 498:    * element removal, but not element addition.
 499:    *
 500:    * @return a set view of the keys
 501:    * @see #values()
 502:    * @see #entrySet()
 503:    */
 504:   public Set<K> keySet()
 505:   {
 506:     if (keys == null)
 507:       // Create an AbstractSet with custom implementations of those methods
 508:       // that can be overridden easily and efficiently.
 509:       keys = new AbstractSet<K>()
 510:       {
 511:         public int size()
 512:         {
 513:           return size;
 514:         }
 515: 
 516:         public Iterator<K> iterator()
 517:         {
 518:           // Cannot create the iterator directly, because of LinkedHashMap.
 519:           return HashMap.this.iterator(KEYS);
 520:         }
 521: 
 522:         public void clear()
 523:         {
 524:           HashMap.this.clear();
 525:         }
 526: 
 527:         public boolean contains(Object o)
 528:         {
 529:           return containsKey(o);
 530:         }
 531: 
 532:         public boolean remove(Object o)
 533:         {
 534:           // Test against the size of the HashMap to determine if anything
 535:           // really got removed. This is necessary because the return value
 536:           // of HashMap.remove() is ambiguous in the null case.
 537:           int oldsize = size;
 538:           HashMap.this.remove(o);
 539:           return oldsize != size;
 540:         }
 541:       };
 542:     return keys;
 543:   }
 544: 
 545:   /**
 546:    * Returns a "collection view" (or "bag view") of this HashMap's values.
 547:    * The collection is backed by the HashMap, so changes in one show up
 548:    * in the other.  The collection supports element removal, but not element
 549:    * addition.
 550:    *
 551:    * @return a bag view of the values
 552:    * @see #keySet()
 553:    * @see #entrySet()
 554:    */
 555:   public Collection<V> values()
 556:   {
 557:     if (values == null)
 558:       // We don't bother overriding many of the optional methods, as doing so
 559:       // wouldn't provide any significant performance advantage.
 560:       values = new AbstractCollection<V>()
 561:       {
 562:         public int size()
 563:         {
 564:           return size;
 565:         }
 566: 
 567:         public Iterator<V> iterator()
 568:         {
 569:           // Cannot create the iterator directly, because of LinkedHashMap.
 570:           return HashMap.this.iterator(VALUES);
 571:         }
 572: 
 573:         public void clear()
 574:         {
 575:           HashMap.this.clear();
 576:         }
 577:       };
 578:     return values;
 579:   }
 580: 
 581:   /**
 582:    * Returns a "set view" of this HashMap's entries. The set is backed by
 583:    * the HashMap, so changes in one show up in the other.  The set supports
 584:    * element removal, but not element addition.<p>
 585:    *
 586:    * Note that the iterators for all three views, from keySet(), entrySet(),
 587:    * and values(), traverse the HashMap in the same sequence.
 588:    *
 589:    * @return a set view of the entries
 590:    * @see #keySet()
 591:    * @see #values()
 592:    * @see Map.Entry
 593:    */
 594:   public Set<Map.Entry<K, V>> entrySet()
 595:   {
 596:     if (entries == null)
 597:       // Create an AbstractSet with custom implementations of those methods
 598:       // that can be overridden easily and efficiently.
 599:       entries = new AbstractSet<Map.Entry<K, V>>()
 600:       {
 601:         public int size()
 602:         {
 603:           return size;
 604:         }
 605: 
 606:         public Iterator<Map.Entry<K, V>> iterator()
 607:         {
 608:           // Cannot create the iterator directly, because of LinkedHashMap.
 609:           return HashMap.this.iterator(ENTRIES);
 610:         }
 611: 
 612:         public void clear()
 613:         {
 614:           HashMap.this.clear();
 615:         }
 616: 
 617:         public boolean contains(Object o)
 618:         {
 619:           return getEntry(o) != null;
 620:         }
 621: 
 622:         public boolean remove(Object o)
 623:         {
 624:           HashEntry<K, V> e = getEntry(o);
 625:           if (e != null)
 626:             {
 627:               HashMap.this.remove(e.key);
 628:               return true;
 629:             }
 630:           return false;
 631:         }
 632:       };
 633:     return entries;
 634:   }
 635: 
 636:   /**
 637:    * Helper method for put, that creates and adds a new Entry.  This is
 638:    * overridden in LinkedHashMap for bookkeeping purposes.
 639:    *
 640:    * @param key the key of the new Entry
 641:    * @param value the value
 642:    * @param idx the index in buckets where the new Entry belongs
 643:    * @param callRemove whether to call the removeEldestEntry method
 644:    * @see #put(Object, Object)
 645:    */
 646:   void addEntry(K key, V value, int idx, boolean callRemove)
 647:   {
 648:     HashEntry<K, V> e = new HashEntry<K, V>(key, value);
 649:     e.next = buckets[idx];
 650:     buckets[idx] = e;
 651:   }
 652: 
 653:   /**
 654:    * Helper method for entrySet(), which matches both key and value
 655:    * simultaneously.
 656:    *
 657:    * @param o the entry to match
 658:    * @return the matching entry, if found, or null
 659:    * @see #entrySet()
 660:    */
 661:   // Package visible, for use in nested classes.
 662:   final HashEntry<K, V> getEntry(Object o)
 663:   {
 664:     if (! (o instanceof Map.Entry))
 665:       return null;
 666:     Map.Entry<K, V> me = (Map.Entry<K, V>) o;
 667:     K key = me.getKey();
 668:     int idx = hash(key);
 669:     HashEntry<K, V> e = buckets[idx];
 670:     while (e != null)
 671:       {
 672:         if (equals(e.key, key))
 673:           return equals(e.value, me.getValue()) ? e : null;
 674:         e = e.next;
 675:       }
 676:     return null;
 677:   }
 678: 
 679:   /**
 680:    * Helper method that returns an index in the buckets array for `key'
 681:    * based on its hashCode().  Package visible for use by subclasses.
 682:    *
 683:    * @param key the key
 684:    * @return the bucket number
 685:    */
 686:   final int hash(Object key)
 687:   {
 688:     return key == null ? 0 : Math.abs(key.hashCode() % buckets.length);
 689:   }
 690: 
 691:   /**
 692:    * Generates a parameterized iterator.  Must be overrideable, since
 693:    * LinkedHashMap iterates in a different order.
 694:    *
 695:    * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
 696:    * @return the appropriate iterator
 697:    */
 698:   <T> Iterator<T> iterator(int type)
 699:   {
 700:     // FIXME: bogus cast here.
 701:     return new HashIterator<T>(type);
 702:   }
 703: 
 704:   /**
 705:    * A simplified, more efficient internal implementation of putAll(). clone() 
 706:    * should not call putAll or put, in order to be compatible with the JDK 
 707:    * implementation with respect to subclasses.
 708:    *
 709:    * @param m the map to initialize this from
 710:    */
 711:   void putAllInternal(Map<? extends K, ? extends V> m)
 712:   {
 713:     final Map<K,V> addMap = (Map<K,V>) m;
 714:     final Iterator<Map.Entry<K,V>> it = addMap.entrySet().iterator();
 715:     size = 0;
 716:     while (it.hasNext())
 717:       {
 718:     final Map.Entry<K,V> e = it.next();
 719:         size++;
 720:     K key = e.getKey();
 721:     int idx = hash(key);
 722:     addEntry(key, e.getValue(), idx, false);
 723:       }
 724:   }
 725: 
 726:   /**
 727:    * Increases the size of the HashMap and rehashes all keys to new
 728:    * array indices; this is called when the addition of a new value
 729:    * would cause size() &gt; threshold. Note that the existing Entry
 730:    * objects are reused in the new hash table.
 731:    *
 732:    * <p>This is not specified, but the new size is twice the current size
 733:    * plus one; this number is not always prime, unfortunately.
 734:    */
 735:   private void rehash()
 736:   {
 737:     HashEntry<K, V>[] oldBuckets = buckets;
 738: 
 739:     int newcapacity = (buckets.length * 2) + 1;
 740:     threshold = (int) (newcapacity * loadFactor);
 741:     buckets = (HashEntry<K, V>[]) new HashEntry[newcapacity];
 742: 
 743:     for (int i = oldBuckets.length - 1; i >= 0; i--)
 744:       {
 745:         HashEntry<K, V> e = oldBuckets[i];
 746:         while (e != null)
 747:           {
 748:             int idx = hash(e.key);
 749:             HashEntry<K, V> dest = buckets[idx];
 750:             HashEntry<K, V> next = e.next;
 751:             e.next = buckets[idx];
 752:             buckets[idx] = e;
 753:             e = next;
 754:           }
 755:       }
 756:   }
 757: 
 758:   /**
 759:    * Serializes this object to the given stream.
 760:    *
 761:    * @param s the stream to write to
 762:    * @throws IOException if the underlying stream fails
 763:    * @serialData the <i>capacity</i>(int) that is the length of the
 764:    *             bucket array, the <i>size</i>(int) of the hash map
 765:    *             are emitted first.  They are followed by size entries,
 766:    *             each consisting of a key (Object) and a value (Object).
 767:    */
 768:   private void writeObject(ObjectOutputStream s) throws IOException
 769:   {
 770:     // Write the threshold and loadFactor fields.
 771:     s.defaultWriteObject();
 772: 
 773:     s.writeInt(buckets.length);
 774:     s.writeInt(size);
 775:     // Avoid creating a wasted Set by creating the iterator directly.
 776:     Iterator<HashEntry<K, V>> it = iterator(ENTRIES);
 777:     while (it.hasNext())
 778:       {
 779:         HashEntry<K, V> entry = it.next();
 780:         s.writeObject(entry.key);
 781:         s.writeObject(entry.value);
 782:       }
 783:   }
 784: 
 785:   /**
 786:    * Deserializes this object from the given stream.
 787:    *
 788:    * @param s the stream to read from
 789:    * @throws ClassNotFoundException if the underlying stream fails
 790:    * @throws IOException if the underlying stream fails
 791:    * @serialData the <i>capacity</i>(int) that is the length of the
 792:    *             bucket array, the <i>size</i>(int) of the hash map
 793:    *             are emitted first.  They are followed by size entries,
 794:    *             each consisting of a key (Object) and a value (Object).
 795:    */
 796:   private void readObject(ObjectInputStream s)
 797:     throws IOException, ClassNotFoundException
 798:   {
 799:     // Read the threshold and loadFactor fields.
 800:     s.defaultReadObject();
 801: 
 802:     // Read and use capacity, followed by key/value pairs.
 803:     buckets = (HashEntry<K, V>[]) new HashEntry[s.readInt()];
 804:     int len = s.readInt();
 805:     size = len;
 806:     while (len-- > 0)
 807:       {
 808:         Object key = s.readObject();
 809:         addEntry((K) key, (V) s.readObject(), hash(key), false);
 810:       }
 811:   }
 812: 
 813:   /**
 814:    * Iterate over HashMap's entries.
 815:    * This implementation is parameterized to give a sequential view of
 816:    * keys, values, or entries.
 817:    *
 818:    * @author Jon Zeppieri
 819:    */
 820:   private final class HashIterator<T> implements Iterator<T>
 821:   {
 822:     /**
 823:      * The type of this Iterator: {@link #KEYS}, {@link #VALUES},
 824:      * or {@link #ENTRIES}.
 825:      */
 826:     private final int type;
 827:     /**
 828:      * The number of modifications to the backing HashMap that we know about.
 829:      */
 830:     private int knownMod = modCount;
 831:     /** The number of elements remaining to be returned by next(). */
 832:     private int count = size;
 833:     /** Current index in the physical hash table. */
 834:     private int idx = buckets.length;
 835:     /** The last Entry returned by a next() call. */
 836:     private HashEntry last;
 837:     /**
 838:      * The next entry that should be returned by next(). It is set to something
 839:      * if we're iterating through a bucket that contains multiple linked
 840:      * entries. It is null if next() needs to find a new bucket.
 841:      */
 842:     private HashEntry next;
 843: 
 844:     /**
 845:      * Construct a new HashIterator with the supplied type.
 846:      * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
 847:      */
 848:     HashIterator(int type)
 849:     {
 850:       this.type = type;
 851:     }
 852: 
 853:     /**
 854:      * Returns true if the Iterator has more elements.
 855:      * @return true if there are more elements
 856:      */
 857:     public boolean hasNext()
 858:     {
 859:       return count > 0;
 860:     }
 861: 
 862:     /**
 863:      * Returns the next element in the Iterator's sequential view.
 864:      * @return the next element
 865:      * @throws ConcurrentModificationException if the HashMap was modified
 866:      * @throws NoSuchElementException if there is none
 867:      */
 868:     public T next()
 869:     {
 870:       if (knownMod != modCount)
 871:         throw new ConcurrentModificationException();
 872:       if (count == 0)
 873:         throw new NoSuchElementException();
 874:       count--;
 875:       HashEntry e = next;
 876: 
 877:       while (e == null)
 878:         e = buckets[--idx];
 879: 
 880:       next = e.next;
 881:       last = e;
 882:       if (type == VALUES)
 883:         return (T) e.value;
 884:       if (type == KEYS)
 885:         return (T) e.key;
 886:       return (T) e;
 887:     }
 888: 
 889:     /**
 890:      * Removes from the backing HashMap the last element which was fetched
 891:      * with the <code>next()</code> method.
 892:      * @throws ConcurrentModificationException if the HashMap was modified
 893:      * @throws IllegalStateException if called when there is no last element
 894:      */
 895:     public void remove()
 896:     {
 897:       if (knownMod != modCount)
 898:         throw new ConcurrentModificationException();
 899:       if (last == null)
 900:         throw new IllegalStateException();
 901: 
 902:       HashMap.this.remove(last.key);
 903:       last = null;
 904:       knownMod++;
 905:     }
 906:   }
 907: }