Source for java.awt.image.AreaAveragingScaleFilter

   1: /* AreaAveragingScaleFilter.java -- Java class for filtering images
   2:    Copyright (C) 1999,2006 Free Software Foundation, Inc.
   3: 
   4: This file is part of GNU Classpath.
   5: 
   6: GNU Classpath is free software; you can redistribute it and/or modify
   7: it under the terms of the GNU General Public License as published by
   8: the Free Software Foundation; either version 2, or (at your option)
   9: any later version.
  10: 
  11: GNU Classpath is distributed in the hope that it will be useful, but
  12: WITHOUT ANY WARRANTY; without even the implied warranty of
  13: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14: General Public License for more details.
  15: 
  16: You should have received a copy of the GNU General Public License
  17: along with GNU Classpath; see the file COPYING.  If not, write to the
  18: Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  19: 02110-1301 USA.
  20: 
  21: Linking this library statically or dynamically with other modules is
  22: making a combined work based on this library.  Thus, the terms and
  23: conditions of the GNU General Public License cover the whole
  24: combination.
  25: 
  26: As a special exception, the copyright holders of this library give you
  27: permission to link this library with independent modules to produce an
  28: executable, regardless of the license terms of these independent
  29: modules, and to copy and distribute the resulting executable under
  30: terms of your choice, provided that you also meet, for each linked
  31: independent module, the terms and conditions of the license of that
  32: module.  An independent module is a module which is not derived from
  33: or based on this library.  If you modify this library, you may extend
  34: this exception to your version of the library, but you are not
  35: obligated to do so.  If you do not wish to do so, delete this
  36: exception statement from your version. */
  37: 
  38: 
  39: package java.awt.image;
  40: 
  41: /**
  42:  * This filter should produce images which do not have image artifacts
  43:  * like broken lines which were originally unbroken.  The cost is of
  44:  * course speed.  Using bi-linear interpolation here against 4 pixel
  45:  * points should give the desired results although Sun does not 
  46:  * specify what the exact algorithm should be.
  47:  * <br>
  48:  *
  49:  * @author C. Brian Jones (cbj@gnu.org) 
  50:  */
  51: public class AreaAveragingScaleFilter extends ReplicateScaleFilter
  52: {
  53:   /**
  54:    * Construct an instance of <code>AreaAveragingScaleFilter</code> which
  55:    * should be used in conjunction with a <code>FilteredImageSource</code>
  56:    * object.
  57:    * 
  58:    * @param width the width of the destination image
  59:    * @param height the height of the destination image
  60:    */
  61:   public AreaAveragingScaleFilter(int width, int height) {
  62:     super(width, height);
  63:   }
  64: 
  65:   /**
  66:    * The <code>ImageProducer</code> should call this method with a
  67:    * bit mask of hints from any of <code>RANDOMPIXELORDER</code>,
  68:    * <code>TOPDOWNLEFTRIGHT</code>, <code>COMPLETESCANLINES</code>,
  69:    * <code>SINGLEPASS</code>, <code>SINGLEFRAME</code> from the 
  70:    * <code>ImageConsumer</code> interface.
  71:    * <br>
  72:    * FIXME - more than likely Sun's implementation desires 
  73:    * <code>TOPDOWNLEFTRIGHT</code> order and this method is overloaded here
  74:    * in order to assure that mask is part of the hints added to
  75:    * the consumer.
  76:    * 
  77:    * @param flags a bit mask of hints
  78:    * @see ImageConsumer
  79:    */
  80:   public void setHints(int flags)
  81:   {
  82:     if (consumer != null)
  83:       consumer.setHints(flags);
  84:   }
  85: 
  86:   /**
  87:    * This function delivers a rectangle of pixels where any
  88:    * pixel(m,n) is stored in the array as a <code>byte</code> at
  89:    * index (n * scansize + m + offset).  
  90:    *
  91:    * @param x the x coordinate of the rectangle
  92:    * @param y the y coordinate of the rectangle
  93:    * @param w the width of the rectangle
  94:    * @param h the height of the rectangle
  95:    * @param model the <code>ColorModel</code> used to translate the pixels
  96:    * @param pixels the array of pixel values
  97:    * @param offset the index of the first pixels in the <code>pixels</code> array
  98:    * @param scansize the width to use in extracting pixels from the <code>pixels</code> array
  99:    */
 100:   public void setPixels(int x, int y, int w, int h, 
 101:             ColorModel model, byte[] pixels, int offset, int scansize)
 102:   {
 103:     double rx = ((double) srcWidth) / destWidth;
 104:     double ry = ((double) srcHeight) / destHeight;
 105: 
 106:     int destScansize = (int) Math.round(scansize / rx);
 107: 
 108:     byte[] destPixels = averagePixels(x, y, w, h,
 109:                       model, pixels, offset, scansize,
 110:                       rx, ry, destScansize);
 111: 
 112:     if (consumer != null)
 113:       consumer.setPixels((int) Math.floor(x/rx), (int) Math.floor(y/ry),
 114:              (int) Math.ceil(w/rx), (int) Math.ceil(h/ry),
 115:              model, destPixels, 0, destScansize);
 116:   }
 117: 
 118:   /**
 119:    * This function delivers a rectangle of pixels where any
 120:    * pixel(m,n) is stored in the array as an <code>int</code> at
 121:    * index (n * scansize + m + offset).  
 122:    *
 123:    * @param x the x coordinate of the rectangle
 124:    * @param y the y coordinate of the rectangle
 125:    * @param w the width of the rectangle
 126:    * @param h the height of the rectangle
 127:    * @param model the <code>ColorModel</code> used to translate the pixels
 128:    * @param pixels the array of pixel values
 129:    * @param offset the index of the first pixels in the <code>pixels</code> array
 130:    * @param scansize the width to use in extracting pixels from the <code>pixels</code> array
 131:    */
 132:   public void setPixels(int x, int y, int w, int h, 
 133:             ColorModel model, int[] pixels, int offset, int scansize)
 134:   {
 135:     double rx = ((double) srcWidth) / destWidth;
 136:     double ry = ((double) srcHeight) / destHeight;
 137: 
 138:     int destScansize = (int) Math.round(scansize / rx);
 139: 
 140:     int[] destPixels = averagePixels(x, y, w, h,
 141:                      model, pixels, offset, scansize,
 142:                      rx, ry, destScansize);
 143: 
 144:     if (consumer != null)
 145:       consumer.setPixels((int) Math.floor(x/rx), (int) Math.floor(y/ry),
 146:              (int) Math.ceil(w/rx), (int) Math.ceil(h/ry),
 147:              model, destPixels, 0, destScansize);
 148:   }
 149: 
 150:   /**
 151:    * This is a really terrible implementation, 
 152:    * since it uses the nearest-neighbor method. This filter is rarely used though.
 153:    *
 154:    * @param srcx, srcy - Source rectangle upper-left corner
 155:    * @param srcw, srch - Source rectangle width and height
 156:    * @param model - Pixel color model
 157:    * @param srcPixels - Source pixel data.
 158:    * @param srcOffset - Starting offset into the source pixel data array.
 159:    * @param srcScansize - Source array scanline size.
 160:    * @param rx,ry - Scaling factor.
 161:    * @param dstScansize - Destination array scanline size.
 162:    */
 163:   private byte[] averagePixels(int srcx, int srcy, int srcw, int srch,
 164:                    ColorModel model, byte[] srcPixels,
 165:                    int srcOffset, int srcScansize,
 166:                    double rx, double ry, int destScansize)
 167:   {
 168:     int destW = (int) Math.ceil(srcw/rx);
 169:     int destH = (int) Math.ceil(srch/ry);
 170:     byte[] destPixels = new byte[ destW * destH ];
 171:     int sx, sy;
 172: 
 173:     int w = (int)Math.ceil(rx);
 174:     int h = (int)Math.ceil(ry);
 175: 
 176:     for(int x = 0; x < destW; x++)
 177:       for(int y = 0; y < destH; y++)
 178:     {
 179:       sx = (int) (x * rx);
 180:       sy = (int) (y * ry);
 181: 
 182:       int r,g,b,a;
 183:       r = g = b = a = 0;
 184: 
 185:       for(int i = 0; i < w; i++)
 186:         {
 187:           for(int j = 0; j < h; j++)
 188:         {
 189:           int idx = srcx + sx + i + (srcy + sy + j)*srcScansize;
 190:           r += model.getRed(srcPixels[ idx ]);
 191:           g += model.getGreen(srcPixels[ idx ]);
 192:           b += model.getBlue(srcPixels[ idx ]);
 193:           a += model.getAlpha(srcPixels[ idx ]);
 194:         }
 195:         }
 196:         
 197:       r = r / (w * h);
 198:       g = g / (w * h);
 199:       b = b / (w * h);
 200:       a = a / (w * h);
 201: 
 202:       // Does this really work?
 203:       destPixels[x + destScansize*y] = (byte)model.getDataElement
 204:         (new int[]{r, g, b, a}, 0);
 205:     }
 206: 
 207:     return destPixels;
 208:   }
 209: 
 210:   /**
 211:    * This is a really terrible implementation, 
 212:    * since it uses the nearest-neighbor method. This filter is rarely used though.
 213:    *
 214:    * @param srcx, srcy - Source rectangle upper-left corner
 215:    * @param srcw, srch - Source rectangle width and height
 216:    * @param model - Pixel color model
 217:    * @param srcPixels - Source pixel data.
 218:    * @param srcOffset - Starting offset into the source pixel data array.
 219:    * @param srcScansize - Source array scanline size.
 220:    * @param rx,ry - Scaling factor.
 221:    * @param dstScansize - Destination array scanline size.
 222:    */
 223:   private int[] averagePixels(int srcx, int srcy, int srcw, int srch,
 224:                   ColorModel model, int[] srcPixels,
 225:                   int srcOffset, int srcScansize,
 226:                   double rx, double ry, int destScansize)
 227:   {
 228:     int destW = (int) Math.ceil(srcw/rx);
 229:     int destH = (int) Math.ceil(srch/ry);
 230:     int[] destPixels = new int[ destW * destH ];
 231:     int sx, sy;
 232:     
 233:     int w = (int)Math.ceil(rx);
 234:     int h = (int)Math.ceil(ry);
 235:     
 236:     for(int x = 0; x < destW; x++)
 237:       for(int y = 0; y < destH; y++)
 238:     {
 239:       sx = (int) (x * rx);
 240:       sy = (int) (y * ry);
 241:       
 242:       int r,g,b,a;
 243:       r = g = b = a = 0;
 244:       
 245:       for(int i = 0; i < w; i++)
 246:         {
 247:           for(int j = 0; j < h; j++)
 248:         {
 249:           int idx = srcx + sx + i + (srcy + sy + j)*srcScansize;
 250:           r += model.getRed(srcPixels[ idx ]);
 251:           g += model.getGreen(srcPixels[ idx ]);
 252:           b += model.getBlue(srcPixels[ idx ]);
 253:           a += model.getAlpha(srcPixels[ idx ]);
 254:         }
 255:         }
 256:       
 257:       r = r / (w * h);
 258:       g = g / (w * h);
 259:       b = b / (w * h);
 260:       a = a / (w * h);
 261: 
 262:       destPixels[x + destScansize*y] = model.getDataElement
 263:         (new int[]{r, g, b, a}, 0);
 264:     }
 265:     
 266:     return destPixels;
 267:   }
 268: }