GNU Classpath (0.95) | |
Frames | No Frames |
1: /* LinkedHashMap.java -- a class providing hashtable data structure, 2: mapping Object --> Object, with linked list traversal 3: Copyright (C) 2001, 2002, 2005 Free Software Foundation, Inc. 4: 5: This file is part of GNU Classpath. 6: 7: GNU Classpath is free software; you can redistribute it and/or modify 8: it under the terms of the GNU General Public License as published by 9: the Free Software Foundation; either version 2, or (at your option) 10: any later version. 11: 12: GNU Classpath is distributed in the hope that it will be useful, but 13: WITHOUT ANY WARRANTY; without even the implied warranty of 14: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15: General Public License for more details. 16: 17: You should have received a copy of the GNU General Public License 18: along with GNU Classpath; see the file COPYING. If not, write to the 19: Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 20: 02110-1301 USA. 21: 22: Linking this library statically or dynamically with other modules is 23: making a combined work based on this library. Thus, the terms and 24: conditions of the GNU General Public License cover the whole 25: combination. 26: 27: As a special exception, the copyright holders of this library give you 28: permission to link this library with independent modules to produce an 29: executable, regardless of the license terms of these independent 30: modules, and to copy and distribute the resulting executable under 31: terms of your choice, provided that you also meet, for each linked 32: independent module, the terms and conditions of the license of that 33: module. An independent module is a module which is not derived from 34: or based on this library. If you modify this library, you may extend 35: this exception to your version of the library, but you are not 36: obligated to do so. If you do not wish to do so, delete this 37: exception statement from your version. */ 38: 39: 40: package java.util; 41: 42: /** 43: * This class provides a hashtable-backed implementation of the 44: * Map interface, with predictable traversal order. 45: * <p> 46: * 47: * It uses a hash-bucket approach; that is, hash collisions are handled 48: * by linking the new node off of the pre-existing node (or list of 49: * nodes). In this manner, techniques such as linear probing (which 50: * can cause primary clustering) and rehashing (which does not fit very 51: * well with Java's method of precomputing hash codes) are avoided. In 52: * addition, this maintains a doubly-linked list which tracks either 53: * insertion or access order. 54: * <p> 55: * 56: * In insertion order, calling <code>put</code> adds the key to the end of 57: * traversal, unless the key was already in the map; changing traversal order 58: * requires removing and reinserting a key. On the other hand, in access 59: * order, all calls to <code>put</code> and <code>get</code> cause the 60: * accessed key to move to the end of the traversal list. Note that any 61: * accesses to the map's contents via its collection views and iterators do 62: * not affect the map's traversal order, since the collection views do not 63: * call <code>put</code> or <code>get</code>. 64: * <p> 65: * 66: * One of the nice features of tracking insertion order is that you can 67: * copy a hashtable, and regardless of the implementation of the original, 68: * produce the same results when iterating over the copy. This is possible 69: * without needing the overhead of <code>TreeMap</code>. 70: * <p> 71: * 72: * When using this {@link #LinkedHashMap(int, float, boolean) constructor}, 73: * you can build an access-order mapping. This can be used to implement LRU 74: * caches, for example. By overriding {@link #removeEldestEntry(Map.Entry)}, 75: * you can also control the removal of the oldest entry, and thereby do 76: * things like keep the map at a fixed size. 77: * <p> 78: * 79: * Under ideal circumstances (no collisions), LinkedHashMap offers O(1) 80: * performance on most operations (<code>containsValue()</code> is, 81: * of course, O(n)). In the worst case (all keys map to the same 82: * hash code -- very unlikely), most operations are O(n). Traversal is 83: * faster than in HashMap (proportional to the map size, and not the space 84: * allocated for the map), but other operations may be slower because of the 85: * overhead of the maintaining the traversal order list. 86: * <p> 87: * 88: * LinkedHashMap accepts the null key and null values. It is not 89: * synchronized, so if you need multi-threaded access, consider using:<br> 90: * <code>Map m = Collections.synchronizedMap(new LinkedHashMap(...));</code> 91: * <p> 92: * 93: * The iterators are <i>fail-fast</i>, meaning that any structural 94: * modification, except for <code>remove()</code> called on the iterator 95: * itself, cause the iterator to throw a 96: * {@link ConcurrentModificationException} rather than exhibit 97: * non-deterministic behavior. 98: * 99: * @author Eric Blake (ebb9@email.byu.edu) 100: * @author Tom Tromey (tromey@redhat.com) 101: * @author Andrew John Hughes (gnu_andrew@member.fsf.org) 102: * @see Object#hashCode() 103: * @see Collection 104: * @see Map 105: * @see HashMap 106: * @see TreeMap 107: * @see Hashtable 108: * @since 1.4 109: * @status updated to 1.4 110: */ 111: public class LinkedHashMap<K,V> extends HashMap<K,V> 112: { 113: /** 114: * Compatible with JDK 1.4. 115: */ 116: private static final long serialVersionUID = 3801124242820219131L; 117: 118: /** 119: * The oldest Entry to begin iteration at. 120: */ 121: transient LinkedHashEntry root; 122: 123: /** 124: * The iteration order of this linked hash map: <code>true</code> for 125: * access-order, <code>false</code> for insertion-order. 126: * 127: * @serial true for access order traversal 128: */ 129: final boolean accessOrder; 130: 131: /** 132: * Class to represent an entry in the hash table. Holds a single key-value 133: * pair and the doubly-linked insertion order list. 134: */ 135: class LinkedHashEntry<K,V> extends HashEntry<K,V> 136: { 137: /** 138: * The predecessor in the iteration list. If this entry is the root 139: * (eldest), pred points to the newest entry. 140: */ 141: LinkedHashEntry<K,V> pred; 142: 143: /** The successor in the iteration list, null if this is the newest. */ 144: LinkedHashEntry<K,V> succ; 145: 146: /** 147: * Simple constructor. 148: * 149: * @param key the key 150: * @param value the value 151: */ 152: LinkedHashEntry(K key, V value) 153: { 154: super(key, value); 155: if (root == null) 156: { 157: root = this; 158: pred = this; 159: } 160: else 161: { 162: pred = root.pred; 163: pred.succ = this; 164: root.pred = this; 165: } 166: } 167: 168: /** 169: * Called when this entry is accessed via put or get. This version does 170: * the necessary bookkeeping to keep the doubly-linked list in order, 171: * after moving this element to the newest position in access order. 172: */ 173: void access() 174: { 175: if (accessOrder && succ != null) 176: { 177: modCount++; 178: if (this == root) 179: { 180: root = succ; 181: pred.succ = this; 182: succ = null; 183: } 184: else 185: { 186: pred.succ = succ; 187: succ.pred = pred; 188: succ = null; 189: pred = root.pred; 190: pred.succ = this; 191: root.pred = this; 192: } 193: } 194: } 195: 196: /** 197: * Called when this entry is removed from the map. This version does 198: * the necessary bookkeeping to keep the doubly-linked list in order. 199: * 200: * @return the value of this key as it is removed 201: */ 202: V cleanup() 203: { 204: if (this == root) 205: { 206: root = succ; 207: if (succ != null) 208: succ.pred = pred; 209: } 210: else if (succ == null) 211: { 212: pred.succ = null; 213: root.pred = pred; 214: } 215: else 216: { 217: pred.succ = succ; 218: succ.pred = pred; 219: } 220: return value; 221: } 222: } // class LinkedHashEntry 223: 224: /** 225: * Construct a new insertion-ordered LinkedHashMap with the default 226: * capacity (11) and the default load factor (0.75). 227: */ 228: public LinkedHashMap() 229: { 230: super(); 231: accessOrder = false; 232: } 233: 234: /** 235: * Construct a new insertion-ordered LinkedHashMap from the given Map, 236: * with initial capacity the greater of the size of <code>m</code> or 237: * the default of 11. 238: * <p> 239: * 240: * Every element in Map m will be put into this new HashMap, in the 241: * order of m's iterator. 242: * 243: * @param m a Map whose key / value pairs will be put into 244: * the new HashMap. <b>NOTE: key / value pairs 245: * are not cloned in this constructor.</b> 246: * @throws NullPointerException if m is null 247: */ 248: public LinkedHashMap(Map<? extends K, ? extends V> m) 249: { 250: super(m); 251: accessOrder = false; 252: } 253: 254: /** 255: * Construct a new insertion-ordered LinkedHashMap with a specific 256: * inital capacity and default load factor of 0.75. 257: * 258: * @param initialCapacity the initial capacity of this HashMap (>= 0) 259: * @throws IllegalArgumentException if (initialCapacity < 0) 260: */ 261: public LinkedHashMap(int initialCapacity) 262: { 263: super(initialCapacity); 264: accessOrder = false; 265: } 266: 267: /** 268: * Construct a new insertion-orderd LinkedHashMap with a specific 269: * inital capacity and load factor. 270: * 271: * @param initialCapacity the initial capacity (>= 0) 272: * @param loadFactor the load factor (> 0, not NaN) 273: * @throws IllegalArgumentException if (initialCapacity < 0) || 274: * ! (loadFactor > 0.0) 275: */ 276: public LinkedHashMap(int initialCapacity, float loadFactor) 277: { 278: super(initialCapacity, loadFactor); 279: accessOrder = false; 280: } 281: 282: /** 283: * Construct a new LinkedHashMap with a specific inital capacity, load 284: * factor, and ordering mode. 285: * 286: * @param initialCapacity the initial capacity (>=0) 287: * @param loadFactor the load factor (>0, not NaN) 288: * @param accessOrder true for access-order, false for insertion-order 289: * @throws IllegalArgumentException if (initialCapacity < 0) || 290: * ! (loadFactor > 0.0) 291: */ 292: public LinkedHashMap(int initialCapacity, float loadFactor, 293: boolean accessOrder) 294: { 295: super(initialCapacity, loadFactor); 296: this.accessOrder = accessOrder; 297: } 298: 299: /** 300: * Clears the Map so it has no keys. This is O(1). 301: */ 302: public void clear() 303: { 304: super.clear(); 305: root = null; 306: } 307: 308: /** 309: * Returns <code>true</code> if this HashMap contains a value 310: * <code>o</code>, such that <code>o.equals(value)</code>. 311: * 312: * @param value the value to search for in this HashMap 313: * @return <code>true</code> if at least one key maps to the value 314: */ 315: public boolean containsValue(Object value) 316: { 317: LinkedHashEntry e = root; 318: while (e != null) 319: { 320: if (equals(value, e.value)) 321: return true; 322: e = e.succ; 323: } 324: return false; 325: } 326: 327: /** 328: * Return the value in this Map associated with the supplied key, 329: * or <code>null</code> if the key maps to nothing. If this is an 330: * access-ordered Map and the key is found, this performs structural 331: * modification, moving the key to the newest end of the list. NOTE: 332: * Since the value could also be null, you must use containsKey to 333: * see if this key actually maps to something. 334: * 335: * @param key the key for which to fetch an associated value 336: * @return what the key maps to, if present 337: * @see #put(Object, Object) 338: * @see #containsKey(Object) 339: */ 340: public V get(Object key) 341: { 342: int idx = hash(key); 343: HashEntry<K,V> e = buckets[idx]; 344: while (e != null) 345: { 346: if (equals(key, e.key)) 347: { 348: e.access(); 349: return e.value; 350: } 351: e = e.next; 352: } 353: return null; 354: } 355: 356: /** 357: * Returns <code>true</code> if this map should remove the eldest entry. 358: * This method is invoked by all calls to <code>put</code> and 359: * <code>putAll</code> which place a new entry in the map, providing 360: * the implementer an opportunity to remove the eldest entry any time 361: * a new one is added. This can be used to save memory usage of the 362: * hashtable, as well as emulating a cache, by deleting stale entries. 363: * <p> 364: * 365: * For example, to keep the Map limited to 100 entries, override as follows: 366: * <pre> 367: * private static final int MAX_ENTRIES = 100; 368: * protected boolean removeEldestEntry(Map.Entry eldest) 369: * { 370: * return size() > MAX_ENTRIES; 371: * } 372: * </pre><p> 373: * 374: * Typically, this method does not modify the map, but just uses the 375: * return value as an indication to <code>put</code> whether to proceed. 376: * However, if you override it to modify the map, you must return false 377: * (indicating that <code>put</code> should leave the modified map alone), 378: * or you face unspecified behavior. Remember that in access-order mode, 379: * even calling <code>get</code> is a structural modification, but using 380: * the collections views (such as <code>keySet</code>) is not. 381: * <p> 382: * 383: * This method is called after the eldest entry has been inserted, so 384: * if <code>put</code> was called on a previously empty map, the eldest 385: * entry is the one you just put in! The default implementation just 386: * returns <code>false</code>, so that this map always behaves like 387: * a normal one with unbounded growth. 388: * 389: * @param eldest the eldest element which would be removed if this 390: * returns true. For an access-order map, this is the least 391: * recently accessed; for an insertion-order map, this is the 392: * earliest element inserted. 393: * @return true if <code>eldest</code> should be removed 394: */ 395: protected boolean removeEldestEntry(Map.Entry<K,V> eldest) 396: { 397: return false; 398: } 399: 400: /** 401: * Helper method called by <code>put</code>, which creates and adds a 402: * new Entry, followed by performing bookkeeping (like removeEldestEntry). 403: * 404: * @param key the key of the new Entry 405: * @param value the value 406: * @param idx the index in buckets where the new Entry belongs 407: * @param callRemove whether to call the removeEldestEntry method 408: * @see #put(Object, Object) 409: * @see #removeEldestEntry(Map.Entry) 410: * @see LinkedHashEntry#LinkedHashEntry(Object, Object) 411: */ 412: void addEntry(K key, V value, int idx, boolean callRemove) 413: { 414: LinkedHashEntry e = new LinkedHashEntry(key, value); 415: e.next = buckets[idx]; 416: buckets[idx] = e; 417: if (callRemove && removeEldestEntry(root)) 418: remove(root.key); 419: } 420: 421: /** 422: * Helper method, called by clone() to reset the doubly-linked list. 423: * 424: * @param m the map to add entries from 425: * @see #clone() 426: */ 427: void putAllInternal(Map m) 428: { 429: root = null; 430: super.putAllInternal(m); 431: } 432: 433: /** 434: * Generates a parameterized iterator. This allows traversal to follow 435: * the doubly-linked list instead of the random bin order of HashMap. 436: * 437: * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES} 438: * @return the appropriate iterator 439: */ 440: Iterator iterator(final int type) 441: { 442: return new Iterator() 443: { 444: /** The current Entry. */ 445: LinkedHashEntry current = root; 446: 447: /** The previous Entry returned by next(). */ 448: LinkedHashEntry last; 449: 450: /** The number of known modifications to the backing Map. */ 451: int knownMod = modCount; 452: 453: /** 454: * Returns true if the Iterator has more elements. 455: * 456: * @return true if there are more elements 457: */ 458: public boolean hasNext() 459: { 460: return current != null; 461: } 462: 463: /** 464: * Returns the next element in the Iterator's sequential view. 465: * 466: * @return the next element 467: * @throws ConcurrentModificationException if the HashMap was modified 468: * @throws NoSuchElementException if there is none 469: */ 470: public Object next() 471: { 472: if (knownMod != modCount) 473: throw new ConcurrentModificationException(); 474: if (current == null) 475: throw new NoSuchElementException(); 476: last = current; 477: current = current.succ; 478: return type == VALUES ? last.value : type == KEYS ? last.key : last; 479: } 480: 481: /** 482: * Removes from the backing HashMap the last element which was fetched 483: * with the <code>next()</code> method. 484: * 485: * @throws ConcurrentModificationException if the HashMap was modified 486: * @throws IllegalStateException if called when there is no last element 487: */ 488: public void remove() 489: { 490: if (knownMod != modCount) 491: throw new ConcurrentModificationException(); 492: if (last == null) 493: throw new IllegalStateException(); 494: LinkedHashMap.this.remove(last.key); 495: last = null; 496: knownMod++; 497: } 498: }; 499: } 500: } // class LinkedHashMap
GNU Classpath (0.95) |